To Recycle or Not to Recycle – PVC Cable Waste is the Question

Written by Moritz Bühner   // July 9, 2012    11 Comments

Recycling – it’s the magic word when the ill-informed think “environmental friendliness”. “Recyclable” – the number one green term that doesn’t mean a thing. Of course, as long as you put enough energy into a process, you can recycle virtually anything. The issue, the uncomfortable drawback that sits behind the pleasant sheen, the little itch you feel when you start thinking things through, is the inevitable truth of energy input. Yes, producing stuff requires energy. And yes, recycling, too, really does require energy! Material savings are easy to outline, but the key to a true environmental assessment is a clear picture of all the energy used and transformed in every single process that the recycling involves. Every step you take to separate or purify a material requires energy. Not to forget that collecting and separating stuff uses energy, too. Now, in order to find a winner in the race between “recycling the old” on the one hand, and “incinerating the old/producing the new” on the other, we have a great raft of things to keep in mind.

Let’s take electric cables as an example. Most cables consist of a copper wire covered in PVC insulation. Recycling the copper definitely makes sense, since we’re dealing with a (naturally) non-renewable metal whose exploitation incurs serious environmental effects. Mining resides among the most energy-intensive ways of winning raw materials, so metal recycling will clearly win over metal mining. However, production of a PVC compound, the material cable insulation is made of, does not involve mining. The most common fossil energy, oil, is extracted and chemically transformed into PVC. Collecting old cables for recycling, then washing and melting them also requires energy, since trucks and industrial plants usually run on fossil fuel. So how do the two compare? How does PVC recycling perform, compared to new PVC production?

In order to get to the bottom of the matter, Europe’s biggest PVC producer Solvay, who runs a PVC recycling plant in the Italian City of Ferrara, conducted a detailed life cycle assessment (LCA). In a recycling process they call VinyLoop, two materials are reclaimed: PVC grains, mainly from cable waste, and Tarpaulin waste, a PET textile coated with PVC. The PVC recovered during the process is a secondary compound comparable in a quality to primary (virgin) PVC compound. Material-wise, the plant is pretty efficient: out of 1.15 kg cable waste, 0.9 kg PVC compound is recovered, and for each 0.29 kg tarpaulin waste, 0.1kg new raw fibers are captured. But what about the overall environmental performance?

Well, the recycling steps are complex, but the software used has modeled them all. First of all, the waste goes into a chemical reactor, where methyl ethyl ketones dissolve the PVC. The remaining (insoluble) elements get filtered out. To avoid any impurities, a second process called decantation uses a centrifuge to separate all traces of unwanted material. The fate that awaits this filtered material depends on its desirability – whereas the copper bits are also recycled, all the pitiful rest goes to the incinerator (yes, that means it gets burned).

Now, the thick mass of solvent and PVC needs to be separated in order to be useful. We do this by injecting steam. The solvent evaporates and is reused, whereas the PVC precipitates as granules. This is where the name of this process comes from – precipitation. All that’s left is drying and packaging.

The method Solvay chose for the life cycle assessment is to follow the ISO 14040/14044 norm using the software Umberto. In order to correctly reflect all possible environmental effects of chemical processes, like PVC recycling, many different impact categories are needed. In this case, light was shed on global warming, water and resource use, the potential for acidification and eutrophication, stratospheric ozone depletion and photochemical oxidation.

And – believe it or not – the recycling uses only half the primary energy (54%) and emits only 39% of the greenhouse gases! Hence, it results in a 39% lower global warming potential. And these figures assume that the waste incinerator is equipped with energy recovery technology. This is important for the non-recycling case: If there is no recycling, burning the PVC can happen in two ways, with or without out regaining the waste’s energy. Without, recycling would compare even better. How much better? Umberto calculates everything. Just compare the following two tables. Speaking of which – at the bottom of the article, you’ll find a link to a complete process map that visualizes the PVC recycling process and all of its components.

The environmental performance of PVC recycling (VinyLoop, right blue column) is a lot better than new production in most of the impact categories. However, since Italy’s energy mix is dominated by coal and natural gas, and recycling uses energy, these two score worse. Taken from the VinyLoop LCA study PDF.

Find the detailed recycling process map by Umberto on page 15 of the study’s PDF.

Article image by Moritz Buehner combines the Umberto VinyLoop process map with a background image by lovestromp


About Moritz Bühner :

Blogger at knowtheflow from 2011-2013, now Sustainability Manager in the wood-based products industry. Bachelor in Environmental and Bioresource Management at the University of Applied Life Sciences Vienna. Born in Hamburg, Germany, lived in Quebec (CAN), Vienna (AUT) and Pamplona (ESP). Why he blogged? "The possibility of going into detail with every link, satisfying the desire to learn. The direct feedback. The free global distribution. I just love the medium!"

Tags:

chemical industry

gate-to-gate approach

ISO 14040

LCA

material flow analysis

PVC

recycling

sustainability

Umberto


11 COMMENTS

  1. By Ed Davis, July 14, 2012

    Great article. It is very encouraging to see the benefits of PVC recycling so clearly detailed. One correction, however. You state “The most common fossil energy, oil, is extracted and chemically transformed into PVC”, when in fact it is Common Salt and Natural Gas (not oil) that are the fundamental components of PVC—making it unique among plastics. Cheers!

    Reply
    • By Eric Vandevyver, August 23, 2013

      Ed Davis commented that gas is the common carbon source to produce PVC instead of oil as stated in the article. As a matter of fact, this is very much dependent on the region where the plastic is produced: Today, US producers would preferably use shale gas, whereas, in Europe (reference for the LCA cited in the article) oil is used and, in China, coal is the main source for carbon. Cost, efficiency and environmental impacts will vary accordingly.
      The same regional dependence also applies for (ultimate) waste disposal: the share between recycling, energy recovery incineration, incineration without energy recovery and landfilling will also vary considerably from continent to continent or even countries.
      LCA practitioners have to consider this and will manage to combine coherent data for each specific case.

      Reply
  2. Pingback : LCA, CF, MFCA? What to Expect From Umberto User Workshop Hamburg, Sept 17/18 | Know the Flow

  3. Pingback : ISO 14064 GHG inventory management? Outline | ABCINFOPAGES.COM

  4. By balbir singh, August 2, 2013

    as a chemical engineer & social activist i want to train students for a small recycling business (1-5 employees)in india. what is the best way of mechanically removing the pvc from the copper. can we pull it thru a die where the pvc & copper are stripped & coiled around 2 different bobbins even if it is done by hand. i am in the learning process in order to set up in india A
    COMPUTER RECYCLING TRAINING INSTITUTE to teach this business with full safety measures to unemployed science students who after learning can set up their own businesses in all cities & villages. at present they just burning the wires emitting toxic fumes into the atmosphere.

    Reply
    • By Moritz Bühner, August 7, 2013

      Hi Balbir, cool project! Have you tried posting your question in the LinkedIn group Waste Management & Recycling Professionals? I’m sure they’ll help you out.
      http://www.linkedin.com/groups/Waste-Management-Recycling-Professionals-82521

      Reply
      • By Ajay, May 1, 2016

        Hello. Do let me know status of your project for electric cables / PVC, copper separation. Am working non similar lines. Perhaps we can pool experience. Thanks.

        Reply
        • Martina Prox By Martina Prox, May 2, 2016

          In reply to Ajay:

          Hi Ajay,

          Moritz, the author of the above article is now working for wood industry. The project referred to in this Article has been conducted by the Umberto User and ifu Hamburg client Solvay. So we shared the study created by Solvay in our Blog.
          The practicioner conducting the study is mentioned in the PDF linked in the article by Moritz, so I assume Joseph would be the person to get in contact with for the exchange of experiences on this topic of electric cables / PVC, copper separation.

          Reply
  5. By Jon Murray, June 11, 2014

    Using VinyLoop is the plasticizer (DEHP) soluable?

    Reply
  6. By Ajay, May 1, 2016

    Good write up. A related follow up. Though certainly not healthy nor desirable, fact is most scrap dealers employ kids to burn the cables and get the copper. This is not only harmful to the environment, but also harms their health. I am working on a mechanical device, like a pencil sharpener, through which if you pass the cable, the outer plastic coating can be saperated from the inner copper wire. Would welcome suggestions on how to go about it.

    Reply
  7. By Derek Mcdoogle, December 28, 2016

    In your article, you stated that recycling the copper definitely makes sense, since we’re dealing with a (naturally) non-renewable metal whose exploitation incurs serious environmental effects. My wife and I were trying to clean up all the junk in our basement last night and didn’t know what stuff to recycle. I wonder if most recycling companies specialize in certain types of metals.

    Reply

Leave a Reply

Your email address will not be published. Required fields are marked *

Similar posts

20-20-20 Objectives

2012

3 scopes

3D printing

academia

ACHEMA

acidification

agriculture

air quality

aluminum

Ankara

antarctic ozone hole

apocalypse

assessment

atmospheric carbon measurement

B2B

Bachelor program

background database

BASF

battery change station

Bauwesen

best practice

bike sharing

bio capacity

bio-economy

biocapacity

biodiversity

biological gas treatment

biomass

blogs

BMBF

books

Brazil

BREEAM

building sector

building standards

business opportunity

carbon

carbon accouting

carbon assessment

carbon emissions

carbon footprint

carbon footprinting

carbon free city

carbon intensity

carbon leakage

carbon management

carbon neutral

carbon neutrality

carbon reduction

carbon relocation

carbon tax

carbon-neutral travel

cargo shipping

carton

central america

central asia

certification

CFC

change

chemical engineering

chemical industry

China

circular economy

circular flow economy

city

climate change

climate control

climate impact

climate neutral

climate protection

club of rome

CO2 balance

CO2 reduction

co2-equivalent

CO2-Fußabdruck

cogeneration

collaborative consumption

combined reporting

commercial sector

commons

comparative life cycle assessment

Competence Center

composite indicator

compost

composting

consistency

construction

construction industry

Consumer goods

consumption

container ship

cooperation along product life cycle

copenhagen

corporate carbon footprint

corporate culture

corporate material flow modeling

Corporate Social Responsibility

cost accounting

cost reduction

cost savings

cost-effective measures

Country Attractiveness

CPF

cradle to cradle

creative destruction

Creative Sustainability

Critique of the Green Economy

cross-collaboration

CSR

CSR report

customer-driven sustainability

cycling

dairy

Dashboard of Sustainability

database

Davos

de-growth economy

decarbonization

dematerialization

denmark

design

developing countries

developing world

development cooperation

Dienstleistungen

distributed manufacturing

divestment

domestic fuel consumption

domestic sector

double decoupling

e-car

e-mobility

e-sankey

e!Sankey

earth overshoot day

Earth Sciences

Earth summit

eCarUs

eco city

eco design

eco label

ecodesign

ecoinvent

Ecolabelling

ecologic footprint

ecological footprint

ecological resilience

ecological tax reform

economic indicators

ecosystem disturbance

ecovillage

education

efficiency

efficiency factory

efficiency investment

efficiency measures

efficient construction

Effizienzfabrik

EHS

eLCAr

electric car

emerging economies

emission gap

emission relocation

emissions

EMS

Energieeffizienz

energiewende

energy

energy contracting

energy efficiency

Energy Efficiency Directive

energy efficiency in production

energy efficient production

Energy Intensity by Sector

energy management

energy performance

energy reduction

energy sources

energy transition

engineering excellence

Enhipro

enms

environment

Environment Ministry

environmental accounting

environmental awareness

environmental balance

environmental capital

Environmental Contracting

environmental control

environmental cost accounting

Environmental Engineering

Environmental Goods and Services Sector

Environmental Governance

environmental impact

environmental impact data

environmental labeling

environmental LCA

environmental management

Environmental management accounting

environmental management system

environmental performance

environmental performance indicator

environmental policy

environmental product declaration

environmental product declarations

environmental profit and loss statement

environmental regulation

environmental standard

Environmental Sustainability Index

environmental technology verification

Environmentally Extend Input Output modelling

environmentally friendly raw materials

Environmentally Harmful Subsidy

Environmentally Weighed Material Consumption

EPD

EU

Europe

European Comission

european commission

European Green Cars Initiative

European Sustainable Development Strategy

eutrophication

EVALEAU

events

external effects

fashion

FIFA

fish

fishery

flow sheet simulation

food footprint

food industry

food loss

food production

food sector

food waste

footprinting

forest ecosystems

forestry

fouling

FPC

free trade

freighter travel

full cost accounting

gate-to-gate

gate-to-gate approach

geopolymer cement

Germany

Ghana

GHG emissions

GHG mitigation

GHG reduction

GHG reduction goals

glass

Global Compact

global justice

Global Supply Chains

global warming

global warming potential

GMO

governance

green building

green buildings

green business

green business models

green Christmas

green construction

green consumers

green economy

green growth

green investment

green jobs

green living

green new deal

green paradox

green production

greenhouse gas emissions

greenhouse gas inventory

greenhouse gas protocol

greenhouse gas reduction

greenhouse gases

greenwash

GRI

handprinting

Happy Life Years

harmonization

Harze

HDPE

heat integration

Herman Daly

HFC

holistic approach

holistic sustainability

human development index

HVAC

IEA

IFEU

ifu hamburg

ILCD Handbook

impact assessment

impact category

incentive

Incentive-based pay

incineration

India

industrial ecology

industrial location choice

industrial production

industrial sector

information design

innovation

input output

input-output databases

input-output economics

InReff

insulation

Integrated Reporting

integrated resource efficiency

integrative approach

intellectual property

internalization of externalities

international standards

interplant collaboration

IPCC

ISO

ISO 14000

ISO 14001

ISO 14008

ISO 14015

ISO 14025

ISO 14031

ISO 14040

ISO 14046

ISO 14051

ISO 14064

ISO 14067

ISO 50001

Jevon’s Paradox.

knowledge economy

Konsumgüter

Kooperation entlang des Produktlebenszyklus

Kuznets curve

Kyoto protocol

LCA

LCA data from suppliers

LCA database

LCA Databases

LCA inventory analysis

LCA recommendations

LCA software

LCM Berlin

lean manufacturing

Lebenszyklusperspektive

LEED

life cycle

life cycle analysis

life cycle assessment

life cycle engineering

life cycle inventory

life cycle management

life cycle perspective

life cycle thinking

life style

lifecycle

limits to growth

LinkedIn

living planet report

Long-Term Pay

low carbon economy

low-carbon transport

low-energy house

management models

manufacturing industry

masdar city

master program

material consumption

material efficiency

material flow

material flow accounting

Material Flow Accounts

material flow analysis

material flow balance

material flow cost accounting

material flow cost analysis

Material Flow Management

material flow modeling

material flow networks

material flowcosts

material flows

material footprint

material losses

materialeffizienz

meat

mechanical-biological treatment

media

metal industry

methodology

Mexico

MFA

MFCA

milk

modeling

Monetize external costs

Montreal Protocol

municipal solid waste

Natural Cost Accounting

nature conservation

Nepal

NIMBY

nitrate pollution

nuclear phase out

nutrients balance

nutrients cycle

OECD

OECD Environment Policy Committee

Ökobilanz

Ökobilanzdaten

Ökobilanzdaten vom Zulieferer

Ökobilanzdatenbanken

Ökobilanzierung

Ökolabelling

Ökologischer Fußabdruck

oligolopoly

Online Resource Efficiency Platform OREP

operational efficiency

optimization

organic agriculture

outsourcing

ozone layer recovery

packaging

PAS

passive house

patents

PET

philippines

phosphorus

photovoltaics

pilot program

pinch analysis

plastic industry

policy

policy instruments

politics

pollution haven hypothesis

post growth economy

post oil age

PR

process engineering

process heat

process improvement

process modeling

process modelling

Process Optimization

process system engineering

product carbon footprint

product environmental footprint

Product life time

product stewardship

production

production circle

production planning

production system

Production-based CO2 Productivity

productivity

Produktlebensdauer

protection proprietary data

PUMA

PVC

qatar

quality

quality journalism

quantified self

Rapid prototyping

rebound effect

recycling

refuse-derived fuel plant

remuneration

remuneration of environmental performance

renewable energy

renewable energy in manufacturing

renewable heat

renewable hydrogen

renewable methane

renewable process heat

renewable raw material

Renewable Resources

renewable thermal energy

resilience

resource conflicts

resource efficiency

Resource Efficiency Framework

resource flows

resource politics

resource productivity

resources

ressource efficiency analysis

ressourceneffizienz

retailer

reuse

RFID

Rio+20 summit

rising material demand

risk management

Rolf Dobelli

sankey diagram

saving potentials

savings

Schutz vertraulicher Daten

scope 3

seafood

season's greetings

seattle

services industry

shopping rage

smart grid

smart meter

SMB

social cost accounting

social LCA

social media

social metabolism

Social-Ecological Resilience

software

solar energy

solar heat

solar thermal energy

South Africa

South America

South Korea

soy milk

stakeholder management

standards

statistics

steady state economy

steel

stranded assets

strong sustainability

studies

sufficiency

supermarket chain

sustainability

sustainability consulting

sustainability control

sustainability indicators

sustainability innovation

sustainability management

sustainability performance

sustainability projects

sustainability reporting

Sustainability Science

sustainability strategy

sustainability triangle

sustainable agriculture

sustainable architecture

sustainable business

sustainable construction

sustainable development

sustainable housing

sustainable lifestyle

Sustainable Living

Sustainable Process Index

sustainable resins

Sustainable Resource Management

sustainable transport

sydney

system analysis

tajikistan

telecommunications

Telekommunikation

Tesco

textile industry

textile refinement

Tobias Viere

total material consumption

trade

transparency

transport

transport emissions

transport sector

Treibhauspotenzial

trends

triple bottom line principles

Turkey

Umberto

umberto for carbon footprint

umberto user workshop

Umweltbilanz

Umweltbundesamt

umweltfreundliche Rohmaterialien

university

upcycling

urban carbon emissions

VDMA

Vélib’

vernon curve

vertical cooperation

Vertragsnaturschutz

virtual water

waste air treatment

waste cycle

waste disposal

waste hierarchy

waste management

waste prevention

wastewater

wastewater treatment

water abstraction rate

Water Consumption by Sector

water extraction

water filter

water footprint

Water Management

water stress

web 2.0

Wellbeing Index

wind gas

wind power

wine

with both eyes open

working conditions

world cup

world statistics day

world vegan day

YET

zero carbon

zero carbon city

zero emission mobility

zero growth

zero growth economy