（次のページから、Material Flow Cost Accounting MFCA Case Examples の「Introduction」、続いて「Table of Contents」、「Contents」が入ります）
Introduction

Material Flow Cost Accounting (hereafter referred to as “MFCA”), a method of Environmental Management Accounting, was developed in Germany. Along with study on the MFCA’s approach and its effectiveness, MFCA has been introduced into industries. As a result, MFCA is being highly appraised and rapidly disseminated as a powerful method to simultaneously realize “reduced environmental impacts” and “improved business efficiency” by increasing transparency of material losses.

The Ministry of Economy, Trade and Industry of Japan has been wishing to contribute to the world to contribute to making both the environment and economies compatible through dissemination of an advanced environmental management accounting approach. Consequently, under the cooperation of concerned parties, Japan proposed inclusion of MFCA into the ISO to ISO/TC207. As a result, ISO/TC207/WG8 (MFCA) was established in 2008.

Japan takes a lead in the activity of ISO/TC 207/WG8 by taking roles of convener and secretary, making efforts toward issuing ISO14051 in 2011. In order to widely share the Japanese MFCA’s best practices and communicate its effectiveness in Japan and overseas, this MFCA Best Practices booklet was produced in Japanese as well as in English as a part of the “FY 2009 International Standardization of Low-Carbon Environmental Management Accounting (Material Flow Cost Accounting introduction and verification, domestic countermeasures etc.)” commissioned by the Ministry of Economy, Trade and Industry of Japan. This booklet includes easy-to-understand Japanese case examples selected from a wide range of industrial types including service industry.

In producing this booklet, the committee members of the “FY 2009 International Standardization of Low-Carbon Environmental Management Accounting (Material Flow Cost Accounting introduction and verification, domestic countermeasures etc.)” provided guidance and advice, which the Japanese Ministry of Economy, Trade and Industry of Japan commissioned. The committee is comprised of the following members (member names are listed in alphabetical order).

March 2010
Environmental Industries Office,
Industrial Science and Technology Policy and Environment Bureau,
Ministry of Economy, Trade and Industry, Japan

Chairman

Katsuhiko Kokubu, Professor, Graduate School of Business Administration, Kobe University,
ISO/TC207/WG8 Convenor

Committee member

Takao Enkawa, Professor, Department of Industrial Engineering and Management. Graduate School of Decision Science and Technology, Tokyo Institute of Technology
Yoshikuni Furukawa, GENERAL MANAGER, SUSTAINABLE MANAGEMENT, GOVERNMENT RELATION DEPT., NITTO DENKO CORPORATION, ISO/TC207/WG8
Secretary

Yuji Kawano, Assistant Manager, Production Management Department, Production Division, Towa Pharmaceutical Co., Ltd.

Kazunori Kitagawa, Chief of Eco Management Center, Japan Productivity Center

Takeshi Mizuguchi, Professor, College of Economics & Regional Policy, Takasaki City University of Economics

Yu Murata, Director of Environmental Industries Office, Industrial Science and Technology Policy and Environment Bureau, Ministry of Economy, Trade and Industry of Japan

Michiyasu Nakajima, Professor, Faculty of Commerce, Kansai University, ISO/TC207/WG8 Expert

Masashi Numata, Senior Manager, Manufacturing Development Innovation Center, Sekisui Chemical Co., LTD.

Hiroshi Tachikawa, Representative director, Propharm Japan Co., Ltd, ISO/TC207/WG8 assistant secretary

Masayasu Yoshikawa, Manager of Business Support Department, Organization for Small & Medium Enterprises and Regional Innovation
Contents

I. How to read this case example ... 1

II. Case Examples in the Manufacturing Industry 7

Case 1 NITTO DENKO CORPORATION .. 8
Case 2 SEKISUI CHEMICAL CO., LTD. .. 11
Case 3 SUMIRON CO., LTD. ... 13
Case 4 TOYO INK MFG. CO., LTD. .. 16
Case 5 Mitsubishi Tanabe Pharma Corporation 20
Case 6 Canon Inc. ... 24
Case 7 TS Corporation .. 29
Case 8 Katagiri Seisakusho Co., Ltd. .. 32
Case 9 Mitsuya Co., Ltd. .. 36
Case 10 KOSEI ALUMINUM CO., LTD. .. 39
Case 11 Shimizu Printing Inc. ... 43
Case 12 GUNZE Limited ... 46
Case 13 Kohshin Rubber Co., Ltd. .. 48
Case 14 Shinryo Co., Ltd. ... 51
Case 15 KODAI SANGYO CO., LTD. .. 54

III. Case Examples in the Non-manufacturing Industry 57

Case 16 JFE group ... 58
Case 17 GUNZE Limited .. 62
Case 18 OHMI BUSSAN, Inc. ... 65
Case 19 Sanden Corporation .. 69
Case 20 Convenience store A ... 72

IV. Case Examples in the Supply Chain .. 75

Case 21 Sanden Corporation and Sanwa Altech 76
Case 22 Panasonic Ecology Systems Co., Ltd. and its supply chain........ 79
Case 23 Ohu Wood Works Co., Ltd. and companies in its supply chain. 82

V. Annex (Overview of Material Flow Cost Accounting) 85
I. How to read this case example
1. Objective of this booklet

The Ministry of Economy, Trade and Industry of Japan has been promoting ISO-standardization of MFCA in order to globally disseminate Material Flow Cost Accounting (MFCA), one of the environmental management accounting tools, which contributes to making both the environment and economies compatible. Japan proposed the inclusion of Material Flow Cost Accounting (hereafter referred to as “MFCA”) in the ISO to ISO/TC207\(^1\). As a result, ISO/TC207/WG8 (MFCA)\(^2\) was established in 2008, making efforts toward international standardization of MFCA (ISO14051) in 2011.

During the course of developing the standard, it was considered necessary to produce a booklet that collates the MFCA case examples. Consequently, this booklet was produced in order to disseminate MFCA on a global scale.

Additionally, this booklet includes annex on overview of MFCA. The annex is based on the first chapter of "Guidance on Introduction of Material Flow Cost Accounting (Third version)", including explanation on the basic approach of MFCA. See the annex if you are a beginner in MFCA.

2. Case examples selected for this booklet

MFCA was developed as a tool to enhance material productivity in manufacturing operations. Hence, there have been a number of examples in manufacturing industries. In addition to examples in the manufacturing industry, MFCA case examples in the supply chain that involve multiple organizations are also selected. Furthermore, MFCA application to industries other than the manufacturing industry has started recently, and characteristic examples such as logistics, construction, and recycling are also included in this booklet.

In order to familiarize MFCA with various types of manufacturing industries, easy-to-understand cases were selected from wide varieties of industries and fields such as those from manufacturing activity, supply chain, logistics, construction and distribution service.

Characteristics of these examples are summarized in “4. List of companies that applied MFCA” and “5. Characteristics of case examples.” Refer to these sections when considering type of industries and processes for MFCA application.

3. Structure of case examples

Each case example consists of (1) “Organizational profile,” (2) “Material flow model of Main Target Process (es),” (3) “Description of material losses,” (4) “Findings through MFCA analysis,” (5) “Targeted points to be improved or improvements based on MFCA analysis,” and (6) “Results and future issues (Conclusion).” Given below are brief explanations on each of these sections:

1. Organizational profile
 This section includes the overview of corporate information such as the type of products

\(^1\) TC 207 is one of the technical committees in International Organization for Standardization (ISO) under which the ISO 14000 series of environmental management standards are developed.

\(^2\) WG 8 is one of the working groups under the TC 207. This working group is engaged in international standardization of MFCA.
manufactured, number of employees, sales, and capital.

(2) Material flow model of Main Target Process(es)
This section introduces products subjected to the MFCA analysis and the characteristics of manufacturing processes. Besides this information, this section provides a guide for establishing a quantity centre and for applying MFCA.
In the case of nonmanufacturing industries, no manufacturing processes are present. Therefore, this section notes only the scope for MFCA analysis and its characteristics.

(3) Description of material losses
This section describes the materials used and material losses generated in the process. Further, it introduces the approach for calculating energy and system costs.

(4) Findings through MFCA analysis
This section states the MFCA calculation result and the findings based on the result.

(5) Targeted points to be improved or improvements based on MFCA analysis
This section states the targeted points for improvement and the improvement measures, as identified on the basis of the MFCA analysis result.

(6) Results and future issues (Conclusion)
This section describes results from the MFCA introduction and implementation, future implementation plan, and other related issues.

4. List of companies that applied MFCA and were included in this booklet
Table 1 organizes the 23 companies or SC teams included in this booklet by the type of industry, and scale in terms of the number of employees. The type of industry is generally based on the categories defined by the Tokyo Stock Exchange. In order to understand the scale of each company, categories based on the number of employees are defined and included in the list. The scale for the number of employees is divided into three categories comprising “Less than 100,” “100 to 999,” and “more than 1,000.” Further, the “Remarks” lists the important points to be noted in the MFCA application and record of MFCA awards presented.

- Type of MFCA case examples
 MFCA case examples are divided into three categories comprising “Manufacturing,” “Non-manufacturing,” and “Supply chain.”
 - Examples in manufacturing sector are those of a single MFCA-applied company/factory.
 - Examples in nonmanufacturing sector includes those of companies generally known as manufacturing companies and those who have applied MFCA to their nonmanufacturing activities such as service, construction, and logistics.
 - Examples in supply-chain sector are based on the examples of multiple companies that concurrently applied MFCA and were cooperatively engaged in associated improvement activities.
Table 1 List of companies that applied MFCA and are included in this booklet

<table>
<thead>
<tr>
<th>Type of MFCA case examples</th>
<th>Name of company</th>
<th>Type of industry</th>
<th>Classification based on number of employees</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing</td>
<td>NITTO DENKO CORPORATION</td>
<td>Chemicals</td>
<td>More than 1,000</td>
<td>Special award for Material Flow Cost Accounting, Eco-efficiency Award 2007*</td>
</tr>
<tr>
<td></td>
<td>SEKISUI CHEMICAL CO., LTD.</td>
<td>Chemicals</td>
<td>More than 1,000</td>
<td>Special award for Material Flow Cost Accounting, Eco-efficiency Award 2008*</td>
</tr>
<tr>
<td></td>
<td>SUMIRON CO., LTD</td>
<td>Chemicals</td>
<td>100~999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOYO INK MFG. CO., LTD.</td>
<td>Chemicals</td>
<td>More than 1,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mitsubishi Tanabe Pharma Corp.</td>
<td>Pharmaceutical</td>
<td>More than 1,000</td>
<td>Special award for Material Flow Cost Accounting, Eco-efficiency Award 2006*</td>
</tr>
<tr>
<td></td>
<td>Canon Inc.</td>
<td>Electric Appliances</td>
<td>More than 1,000</td>
<td>Special award for Material Flow Cost Accounting, Eco-efficiency Award 2006*</td>
</tr>
<tr>
<td></td>
<td>TS Corporation</td>
<td>Electric Appliances</td>
<td>Less than 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Katagiri Seisakusho Co., Ltd.</td>
<td>Transportation equipment</td>
<td>100~999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mitsuya Co., Ltd.</td>
<td>Metal Products</td>
<td>100~999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KOSEI ALUMINUM CO., LTD.</td>
<td>Metal Products</td>
<td>100~999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shimizu Printing Inc.</td>
<td>Pulp & Paper</td>
<td>Less than 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GUNZE Limited</td>
<td>Textiles & Apparels</td>
<td>More than 1,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kohshin Rubber Co., Ltd.</td>
<td>Rubber Products</td>
<td>100~999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shinyo Co., Ltd.</td>
<td>Foods</td>
<td>Less than 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KODAI SANGYO CO., LTD.</td>
<td>Other Products</td>
<td>Less than 100</td>
<td>Special award for Material Flow Cost Accounting, Eco-efficiency Award 2009*</td>
</tr>
<tr>
<td></td>
<td>JFE group</td>
<td>Construction</td>
<td>More than 1,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GUNZE Limited</td>
<td>Textiles & Apparels</td>
<td>More than 1,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O'H & BUSSAN, Inc.</td>
<td>Other Services</td>
<td>Less than 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sanden Corporation</td>
<td>Machinery</td>
<td>More than 1,000</td>
<td>Special award for Material Flow Cost Accounting, Eco-efficiency Award 2009*</td>
</tr>
<tr>
<td></td>
<td>Convenience store A</td>
<td>Retail Trade</td>
<td>Less than 100</td>
<td></td>
</tr>
<tr>
<td>Supply chain</td>
<td>Sanden SC team</td>
<td>Machinery</td>
<td>More than 1,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sanden Corporation</td>
<td>Machinery</td>
<td>Less than 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Panasonic Ecology Systems SC team</td>
<td>Electric Appliances</td>
<td>More than 1,000</td>
<td>Grand Prize for Supply-Chain Model for Resource Conservation 2008***</td>
</tr>
<tr>
<td></td>
<td>Panasonic Ecology Systems Co., Ltd.</td>
<td>Chemicals</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ohu Wood Works SC team</td>
<td>Other Products</td>
<td>100~999</td>
<td>Special award for Material Flow Cost Accounting, Eco-efficiency Award 2008***</td>
</tr>
<tr>
<td></td>
<td>Ohu Wood Works Co., Ltd.</td>
<td>Metal Products</td>
<td>Less than 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Miyoshi Industry</td>
<td>Other Products</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Eco-efficiency Award
This award was established in 2005 with the support of the Ministry of Economy, Trade and Industry of Japan. In 2006, a special award for Material Flow Cost Accounting was established. Since then, this award has been given annually to companies that are considered to especially achieve successful results in MFCA application, development, and dissemination.

Grand Prize for Supply-Chain Model for Resource Conservation and *Green Supply-Chain Award
These awards are presented to companies that participated in the supply-chain cooperation promotion project for resource conservation and achieved successful results. In the Grand Prize for Supply-Chain Model for Resource Conservation, the awards are presented to MFCA-applied supply chain which is most likely to be a model for others in its MFCA approach and the associated improvement plan. The Green Supply-Chain Award is awarded to the supply chain that newly shaped a cooperative formation and achieved successful results next to those awarded the Grand prize for Supply-Chain Model for Resource Conservation.
5. Characteristics of case examples

Below is the description on characteristics the field subjected for MFCA analysis in this booklet. Those companies noted after the description are included in this booklet.

Forming process
After forming process of raw materials (e.g., resin and metals) and materials left-over such as runners often become material losses. Separate material losses are generated at the switching-phase of production types. Material losses are frequently increased through manufacturing of wide varieties of products in small quantities. The companies with the case example on the forming process are NITTO DENKO CORPORATION, SEKISUI CHEMICAL CO., LTD., SUMIRON CO., LTD., TOYO INK MFG. CO., LTD., Kohshin Rubber Co., Ltd. and Panasonic Ecology Systems SC team.

Machining process
Machining of various materials such as metals, resins, glass, and wood materials become material losses through various processes including pressing, cutting, lathe-processing, milling, and polishing. The companies with the case example on the machining process are Canon Inc., TS Corporation, Katagiri Seisakusho Co., Ltd., KOSEI ALUMINUM CO., LTD., KODAI SANGYO CO., LTD., Sanden group, and Ohu Wood Works SC team.

Chemical reaction process
Material losses are frequently generated due to impurities and yield loss in reactions and refining processes. The company with the case example on the chemical reaction process is Mitsubishi Tanabe Pharma Corporation.

Surface treating process
Surface treating includes plating, heat treatment, coating, and rinsing etc. Small amount of material losses are generated from the materials to be treated. However, significant amounts of material losses are generated from operating materials (plating solution, paint, rinsing liquid etc.). The company with the case example on the surface treating process is Mitsuya Co., Ltd.

Manufacturing process of textile products
The subject processes consists of a wide variety of product types differentiated by brand, design, color, and size etc. A significant amount of waste textile materials are produced in cutting process. Likewise, there are also cases when raw materials and products become material losses due to changes in trends that result in clearance of inventory. The company with the case example on the textile products is GUNZE Limited.

Paper processing
The subject process consists of printing, processing of pre-printing paper, and cutting after printing etc. Material losses are frequently generated in the process that involves manufacturing of a wide variety of products in small quantities; material losses are generated at the time of switching of product types. The company with the case example on the paper processing is Shimizu Printing Inc.
Logistics
Product logistics concerns two types of material flows: one is toward the customers, while the other is related to returned products, which is considered as loss. It is necessary to identify environmental impacts and losses in business resources (i.e., cost) that are associated with both flows. The company with the MFCA case example on the logistics is GUNZE Limited.

Construction activity
In addition to materials and costs classifying concepts as defined under MFCA, material losses are identified based on the newly-defined classification of intended construction and unintended construction. The company with the MFCA case example on the construction activities is JFE group.

Recycling activity
Characteristics of the recycle business are that available amount of raw material, its price and amount of intermediate product fluctuate, and that disposal of stocked materials occasionally takes place. The business status can be revealed through MFCA application, which enables accurate understanding of process-oriented losses in physical and monetary units. The company with the MFCA case example on the recycling activities is OHMI BUSSAN, Inc.

Cleaning service
MFCA can be applied to the cleaning service in two ways: one is from the viewpoint of those who provide services and the other, from those who are served. The Company with the MFCA case example on the cleaning service is Sanden Corporation.

Distribution service
In the distribution service, remained items are disposed once they expire, becoming material losses. Further, there is an opportunity loss due to sold-out. MFCA especially increase transparency of loss related to remained items in physical and monetary units. The company with the MFCA case example on the distribution service is the convenience store A.

6. Abbreviations/terms used in this booklet
Abbreviated terms used in this booklet are explained based on the terms and definition given in the draft International Standard of ISO 14051 as shown in the followings:
- QC: quantity centre
 Selected part or parts of a process for which inputs and outputs are quantified in physical and monetary units
- MC: material cost
 Expense for the materials that are used and/or consumed in a quantity centre
- EC: energy cost
 Expense for the energy used to enable operations
- SC: system cost
 All expenses incurred in the course of in-house handling of the material flows except for material costs, energy costs and waste management costs
II. Case Examples in the Manufacturing Industry
Case 1 NITTO DENKO CORPORATION
Production characteristics: Manufacturing line for adhesive tapes for electronics

(1) Organizational profile
One of the products manufactured by NITTO DENKO CORPORATION (hereafter referred to as “Nitto Denko”) is adhesive tapes for electronics. One of the company's facilities is located in Toyohashi, Japan. The company is the Japan’s first model company that introduced MFCA in 2000 in order to verify effectiveness of the method.

The company employees numbered 28,640 on a consolidated basis at the time of the project. The company’s sales were 577.9 billion yen on a consolidated basis. The capital was 26.7 billion yen (FY 2009).

The selected process for the subject project was the manufacturing process of adhesive tapes for electronics.

(2) Material flow model of Main Target Process/es
Material flow model for the selected process (MFCA boundary) is shown in Figure 1.1:

As illustrated in Figure 1.1, the process consists of five processes that are dissolution, batch composition, coating and heating, cutting, and inspection/packaging. Nitto Denko independently developed the “Daily Transaction Control System” to completely control items and information from reception of orders to delivery of products. This system is applied for production control and monthly closing. Material flows (e.g., input, output and yield rate) were managed through the main production/control process unit of this system. Therefore, this system’s control unit was selected and defined as a quantity centre for the purpose of MFCA data collection.

(3) Description of material losses
Material losses in each step of the manufacturing process included the followings:
(i) Coating and heating process: substrates, separators and specialized adhesive, and
(ii) Cutting process: cut ends of the intermediate product.

The percentage of the above material losses per initial input materials by weight was identified to be approximately 32.83%.

(4) Findings through MFCA analysis
Based on the MFCA calculation, the data collected within the boundary are summarized in monetary units as shown in the following:

<table>
<thead>
<tr>
<th>Table 1.1 Material flow cost matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost Classification</td>
</tr>
<tr>
<td>Product</td>
</tr>
<tr>
<td>Material Loss</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 1.2 Comparison between conventional and MFCA-based profit and loss (P/L) statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFCA-based P/L (Unit: Yen)</td>
</tr>
<tr>
<td>Sales</td>
</tr>
<tr>
<td>Product costs</td>
</tr>
<tr>
<td>Material losses</td>
</tr>
<tr>
<td>Gross profit</td>
</tr>
<tr>
<td>Sales and general administrative expenses</td>
</tr>
<tr>
<td>Operating profit</td>
</tr>
</tbody>
</table>

(The values with an asterisk **”*” mark were modified to be fictitious for disclosure)

The MFCA-based P/L statement revealed that sales costs (= product costs) were 3,037,498 yen and waste costs (= material losses) were 1,484,470 yen. The conventional P/L statement indicates sales cost of 4,521,968 yen, which included hidden material loss-related costs. MFCA highlighted such hidden cost.

(5) Targeted points to be improved or improvements based on MFCA analysis
Nitto Denko implemented “waste/loss analysis” and “improvement measures” based on the MFCA results and achieved improvement by approximately 10%. However, further rooms for improvement still remained and a wider scale of improvement measures (a capital investment) were considered along with implementation of the other existing improvement measures. As a result, the production processes were fundamentally reviewed and the full-scale capital investment to advance further improvement/reform was decided. The company’s MFCA implementation results and target were indicated in Table 1.3.
Table 1.3 MFCA implementation results and target

<table>
<thead>
<tr>
<th>Cost Classification</th>
<th>FY2001</th>
<th>FY2004</th>
<th>FY2010 (Target)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products</td>
<td>68%</td>
<td>78%</td>
<td>90%</td>
</tr>
<tr>
<td>Material Losses</td>
<td>32%</td>
<td>22%</td>
<td>10%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

(6) Conclusion
The Nitto Denko's case proved that MFCA could serve as a management effective tool for business decisions in the following aspects:

- MFCA clarifies issues and potential solution for these issues; and
- MFCA enables appropriate capital investment and secures a budget for such investment.

Especially, in this project, MFCA was employed as a company decision-making tool, which led to 700 million yen of improvement measures and capital investments.
(1) Organizational profile
In SEKISUI CHEMICAL CO., LTD. (hereafter referred to as “Sekisui Chemical”), MFCA has been conducted at their 34 sites in Japan. The subject sites manufacture a variety of products including unit houses and chemical products (raw materials of resin and resin-processed products). The company’s total employees numbered 19,742 on a consolidated basis. The company’s sales were 932.4 billion yen (FY 2009) with a capital of 100.002 billion yen on a consolidation-basis.

In Sekisui Chemical, MFCA is considered as a monitoring tool for manufacturing-related innovation activities that aim to realize “no waste,” “no defective products,” “no complaints” and “N-multiplication of productivity”. MFCA has been implemented company-wide as shown in Figure 2.1.
(2) Material flow model of Main Target Process/ies
MFCA calculation and analysis were conducted for each process, which also incorporated losses at the inventory phase as shown in Figure 2.2.

![Material flow model of the main target process (MFCA boundary)](image)

(3) Conclusion
The company’s group-wide target was set to reduce loss costs by 5 billion yen within three years, from 2006 to 2008. The performance up to FY2007 revealed that the target was achieved one year earlier than forecasted; the loss costs were reduced by 5.3 billion yen. Simultaneously, the total amount of waste was reduced by 11%. Further MFCA deployments at household construction sites and overseas branches are the company’s future subject.

![Measures to avoid waste generation](image)

![Measures to reduce waste generation](image)
Case 3 SUMIRON CO., LTD.
Production characteristics: Small-to-medium business and mass production

(1) Organizational profile
SUMIRON CO., LTD. manufactures industrial adhesive tapes. The facility is located in Iga-shi, Mie, Japan. The total factory employees numbered 140. The company's sales were 6.1 billion yen (FY 2007). The company’s capital was 96 million yen at the time of the project.

The selected process was the manufacturing processes of adhesive tapes used as a surface protection film for construction materials and metal plates, protection films for automotive coating, optical members, functional protection films; adhesive mats, and cleaning tapes for electronic parts.

(2) Material flow model of Main Target Process/es
Operations were divided into five quantity centres (QC). QC was defined based on their internal data collection process, and operational units. The five QCs consisted of “Adhesive Compound,” “Coating and Aging,” “Inspection,” “Semi-finished Product Warehouse” and “Stacking, Laminating and Cutting.” Material flow model for the selected process is illustrated in Figure 3.1 below:

Adhesive compound was processed for PE film coating. Subsequently, the adhesive compound was coated on the PE film substrates in the coating process and fixed on PE films in the aging process. The films coated and fixed with the adhesive compound were stored once in the semi-finished product warehouse before the stacking process where the coated films were stacked and cut in appropriate sizes. Subsequently, the films flowed to the laminating process where they were combined with protection films and double-sided tapes and re-cut in product sizes in the cutting process. Finally, the products were packaged and delivered.
The materials, auxiliary materials and operating materials in the target process were shown in the followings:

- Materials: adhesive compounds, original fabric films and semi-finished products;
- Auxiliary materials: additives, laminate films, double-sided films and corner labels; and
- Operating material: organic solvents, releasing agents and paper tubes.

(3) Description of material losses
The material flow cost matrix for the subject process is shown in Table 3.1.

<table>
<thead>
<tr>
<th>Product</th>
<th>Material cost</th>
<th>Energy cost</th>
<th>System cost</th>
<th>Waste management cost</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40,300,000</td>
<td>2,700,000</td>
<td>8,900,000</td>
<td>51,900,000</td>
<td>68.7%</td>
</tr>
<tr>
<td>Material loss</td>
<td>16,600,000</td>
<td>1,600,000</td>
<td>5,400,000</td>
<td>23,600,000</td>
<td>31.2%</td>
</tr>
<tr>
<td>Disposed/recycled</td>
<td></td>
<td></td>
<td></td>
<td>90,000</td>
<td>90,000</td>
</tr>
<tr>
<td>Subtotal</td>
<td>56,900,000</td>
<td>4,300,000</td>
<td>14,300,000</td>
<td>90,000</td>
<td>75,590,000</td>
</tr>
</tbody>
</table>

As indicated in Table 3.1, the percentage of the material loss per the initial input by cost ratio is 31.2%.

(4) Findings through MFCA analysis
Adhesive compounds consisted of adhesives, solvent, and additive, and antibacterial agent. Among all these materials, only 22% of the solvent flowed to a next process; remaining 78% of the solvent became material loss. On the other hand, original fabric film in the painting and edging processes represented the most significant ratio of the input material cost or 30 million yen (approximately 9% of the material loss). In the stacking, laminating and cutting processes, cut-loss represented approximately 5 million yen/year or 18% of the input materials became material losses.

(5) Targeted points to be improved or improvements based on MFCA analysis
Based on the MFCA analysis, 11 improvement measures were raised. Through the MFCA-based simulation, material-loss costs were expected to decrease from 31.2% to 27.5% through the following improvement measures:

- Reduction of organic solvent gas through rectification of solvent blending volume; and
- Reduction of material losses by replacing two types of coating cloth with one type; and
- Use of the thinner film in the coating and aging processes.
(6) Conclusion
Cost-effectiveness analysis was conducted for the three measures noted in Clause 5. This revealed that the amount of material losses could be reduced from 31.3% to 27.5%. Through implementation of MFCA, all material losses in the process were clarified. Especially, it was very meaningful to identify hidden cost related not only to materials but also to system and energy. Moreover, the product costs per square meter of products were clarified, which enabled simulation of the investment impacts. In this project, the scope was limited to a single site. The company intends to expand MFCA company-wide to further promote environmentally-friendly management.
(1) Organizational profile
TOYO INK MFG. CO., LTD. (hereafter referred to as “Toyo Ink”) was involved in development, manufacturing, and sale of the various products including the followings:

- Printing ink and related equipment;
- Can coating;
- Resins;
- Adhesives;
- Adhesive tape;
- Colorants;
- Colouring pellets for plastic; and
- Ink jet ink.

Toyo Ink positions safety management and environmental conservation as its most important themes. MFCA was implemented as the aforementioned themes are consistent with their activities to thoroughly eliminate losses at a manufacturing stage to promote energy-saving and resource-saving policies. The company’s employees numbered 2,123 on a non-consolidated basis and 6,860 on a consolidated basis. The company’s sales were 239.814 billion yen on a consolidated basis (FY 2008). The capital was 317.33 million yen.

(2) Products and processes subject to MFCA implementation and their characteristics
(Coloring pellets and large manufacturing lines that produce lot sizes greater than 500kg were selected for MFCA analysis. The extrusion molding process (OC1) consisted of mixing of colorants, extrusion molding, inspection, and filling processes, and switching process (OC2) which involved cleaning activity for an extruder at the end of each production as shown in Figure 4.1. As the four production processes in the extrusion-molding process were implemented successively, they were grouped together as a single quantity centre (QC1).
(3) Description of material losses
The following losses were identified from each process:

- Mixing process: dust collection loss;
- Extrusion-molding process: dust collection loss, filter, and in-process loss;
- Inspection process: sample products;
- Filling process: disposal of odd parts; and
- Switching process: cleaning resin, cleaning solvent, cleaning cloth.

MFCA data were defined in the following way:

- Actual values collected from on-site activities were used with regard to raw material blending ratio, raw material unit price, total amount of processed materials (remaining added from the previous process), total amount of materials added (including remaining materials), total amount of finished materials (including remaining materials), amount of remaining materials, amount of mill end waste, amount of samples, processing time, and switching time;

- Allocated data of total values from a company-wide operation were used with regard to amount of collected dust, in-process loss, cleaning resin, cleaning materials, and cleaning cloth;

- System costs (SC) included labor costs, depreciation costs, other expenses, and allocation-related operational costs. The product-related SC costs were the allocated cost out of 95% of the costs related to the extrusion molding process. The SC costs for material losses were the allocated costs out of 95% of the costs related to the extrusion molding process plus the costs related to switching-process; and
Energy costs (EC): Electricity costs represented energy costs in the process. 95% of the electricity costs were assigned to the extrusion molding process and 5% of the costs were assigned to switching process.

(4) Findings through MFCA analysis
Material loss was found to be only 2.2% of the direct materials in the extrusion molding process, being increased to only 2.7% even with incorporation of material losses related to indirect materials and those generated in the switching process.

- QC1: extrusion-molding process
 - 97.8% of raw materials and remaining materials from the previous process became product, and 2.2% became material losses (i.e., remaining materials, dust, sample, disposal of edged parts, and in-process loss); and
 - All of filters input to the process as indirect materials became material losses.

- QC2: Switching process
 All of the input cleaning resin, cleaning solvent, and cleaning cloth became material losses.

The ratio of the material loss cost was 7.2%. This consisted of material costs (MC) that accounted for 2.0% and SC that accounted for 5.1% of its cost, indicating that the loss cost ratio of SC was more significant.

Table 4.1 Material flow cost matrix

<table>
<thead>
<tr>
<th></th>
<th>Material cost</th>
<th>Energy cost</th>
<th>System cost</th>
<th>Waste management cost</th>
<th>Selling price for recycled materials</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>77.4%</td>
<td>1.7%</td>
<td>13.7%</td>
<td></td>
<td></td>
<td>92.8%</td>
</tr>
<tr>
<td>Material loss</td>
<td>2.0%</td>
<td>0.1%</td>
<td>5.1%</td>
<td></td>
<td></td>
<td>7.2%</td>
</tr>
<tr>
<td>Waste/Recycle</td>
<td></td>
<td></td>
<td></td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Total</td>
<td>79.3%</td>
<td>1.8%</td>
<td>18.8%</td>
<td>0.1%</td>
<td></td>
<td>100.0%</td>
</tr>
</tbody>
</table>

(5) Targeted points to be improved or improvements based on MFCA analysis
In order to improve switching time, yield ratio, and manufacturing time (processing speed), MFCA data per lot was collected for a further analysis. A study of ten products that takes more than nine-hour for switching process revealed that all parts were disassembled and rinsed as switching was conducted from a darker color to a lighter color. This process can be improved through preparation of spare parts and planning for lump production. For products with lot sizes of less than approximately one-ton, the yield ratio was identified to be particularly low where frequent replacement of the extruder filter occurred for two of these products. Such process can be improved through planning of lump production and coloring inspection by preceding samples. The reason for low processing speed was resin viscosity and coloring density. Increasing processing speed made stable production difficult, leading to an increase in material loss. Therefore Toyo Ink will consider alternative measures from an equipment perspective.
(6) Conclusion
It had been considered that the production line selected for this project did not generate excessive material losses. However, through the MFCA analysis, rooms for improvement were revealed in switching time, yield ratio, and processing speed. MC from cleaning resin etc. and SC and EC for the material losses were highlighted.
In the future, Toyo Ink will utilize MFCA to conduct assessment of impact and profit related to improvements, to raise loss awareness, to unify various management activities, to respond to process abnormalities, to clarify and prioritize issues for improvement, to cost each product, and to conduct LCA analysis for an operational line.
Expanded application of MFCA in an internal production line will be also considered. As a future issue, innovation will be necessary in ensuring that the data input activities for the MFCA analysis will not be overlapped with existing management activities. Also, specific attention should be paid to SC for the material losses, as improvement measures will not immediately lead to reduction in SC.
Case 5 Mitsubishi Tanabe Pharma Corporation
Production characteristics: Low-volume production of various medical products

(1) Organizational profile
Mitsubishi Tanabe Pharma Corporation manufactures medical products. The facility is located in Sanyo Onoda-shi, Yamaguchi, Japan. The total factory employees numbered 10,330 on a consolidated basis as of the end of March. The company’s sales were 414.752 billion yen with a capital of 50 billion yen. The selected process for this project was a production line of a medical product.

(2) Material flow model of Main Target Process/es
Material flow model of the selected process is shown in Figure 5.1 below:

![Figure 5.1 Material flow model for the main target process (MFCA boundary)](image)

Main materials, auxiliary materials, operating materials, solvents and packaging materials were involved in the subject process. Wastes, waste fluid and solvents-sourced air emissions were generated as material losses from the process. Each phase of operations shown in Figure 5.1 was defined as quantity centre (QC).

Characteristics of the manufacturing process included the followings:

- Manufacturing of various medical products in small volumes;
- Mixed use of common equipments and specific equipments for a certain medical product; and
- Presence of recycling process.
(3) Description of material losses
Material loss costs, energy costs, system costs and waste management costs were calculated in the following way:

- Material costs: Gaps between theoretical value and actual value based on the molecular-weight calculation were considered to be material losses. For those materials that only became material losses, their calculations were separately made;

- Energy costs: Energy consumption by each department was allocated to each QC by machine-hour. Subsequently, the losses were calculated and understood based on the material distribution percentage;

- System cost:
 - Labor costs: Labor costs were calculated in man-hour by each QC. Subsequently, the losses were calculated based on the material distribution percentage;
 - Equipment costs: Equipment costs encompassed depreciation and maintenance costs. The equipment costs were allocated to each QC. Subsequently, the losses were calculated, using the following formula:

 \[\text{Equipment-cost per QC} \times [1 - (\text{machine-hour}/24 \text{ hours} \times 356 \text{ days})] \]; and

- Other system costs: Other system costs were calculated by subtracting labor cost, equipment cost, energy cost, and waste management cost from the indirect manufacturing cost.

- Waste management cost: Waste fluid was considered to be waste for management. Waste management cost was calculated in each QC based on the volume of the waste fluid for management and incineration.

(4) Findings through MFCA analysis
Table 5.1 shows the material flow cost matrix based on the MFCA data collection.

<table>
<thead>
<tr>
<th></th>
<th>Material cost</th>
<th>System costs and service related cost</th>
<th>Waste management cost</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>¥ 371,748</td>
<td>¥ 1,296,134</td>
<td>¥ 0</td>
<td>¥ 1,667,882</td>
</tr>
<tr>
<td>Material loss</td>
<td>¥ 586,761</td>
<td>¥ 628,345</td>
<td>¥ 157,836</td>
<td>¥ 1,372,942</td>
</tr>
<tr>
<td>(For waste)</td>
<td>¥(46,210)</td>
<td>()</td>
<td>(¥ 157,836)</td>
<td>(¥ 504,046)</td>
</tr>
<tr>
<td>Total</td>
<td>¥ 958,509</td>
<td>¥ 1,924,480</td>
<td>¥ 157,836</td>
<td>¥ 3,040,825</td>
</tr>
</tbody>
</table>
Table 5.2 Material flow cost matrix by type of cost and QC

<table>
<thead>
<tr>
<th>Costs</th>
<th>Quantity Center</th>
<th>Composition</th>
<th>Refinement</th>
<th>Bulk Pharmaceuticals</th>
<th>Weighing Capacity</th>
<th>Formulation</th>
<th>Packaging</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material cost</td>
<td>¥259,330</td>
<td>¥207,996</td>
<td>¥34,483</td>
<td>¥20,437</td>
<td>¥23,737</td>
<td>¥40,778</td>
<td>¥586,761</td>
<td></td>
</tr>
<tr>
<td>(For collection process)</td>
<td>(¥125,510)</td>
<td>(¥88,762)</td>
<td>(¥2,116)</td>
<td>(¥19,591)</td>
<td>(¥3,038)</td>
<td>(¥1,535)</td>
<td>(¥240,551)</td>
<td></td>
</tr>
<tr>
<td>(For waste)</td>
<td>(¥133,821)</td>
<td>(¥19,274)</td>
<td>(¥32,368)</td>
<td>(¥846)</td>
<td>(¥20,699)</td>
<td>(¥39,243)</td>
<td>(¥346,210)</td>
<td></td>
</tr>
<tr>
<td>System cost</td>
<td>¥118,770</td>
<td>¥33,535</td>
<td>¥113,308</td>
<td>¥24,484</td>
<td>¥113,228</td>
<td>¥213,744</td>
<td>¥617,070</td>
<td></td>
</tr>
<tr>
<td>Service related cost</td>
<td>¥7,041</td>
<td>¥806</td>
<td>¥3,174</td>
<td>¥6</td>
<td>¥81</td>
<td>¥167</td>
<td>¥11,276</td>
<td></td>
</tr>
<tr>
<td>Waste management cost</td>
<td>¥126,048</td>
<td>¥2,100</td>
<td>¥23,868</td>
<td>—</td>
<td>¥1,941</td>
<td>¥3,879</td>
<td>¥157,836</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>¥511,189</td>
<td>¥244,437</td>
<td>¥174,833</td>
<td>¥44,927</td>
<td>¥138,987</td>
<td>¥258,508</td>
<td>¥1,372,942</td>
<td></td>
</tr>
</tbody>
</table>

(5) Targeted points to be improved or improvements based on MFCA analysis

As a result of the MFCA analysis, processes that incurred the significant waste management cost and the material loss cost were identified:

- Waste management costs in the composition process were identified to be 126 million yen; and

- The costs for material losses from the composition to the bulk pharmaceuticals processes amounted to be 285 million yen.

First priority was placed on reduction of the aforementioned waste management costs, as cost reduction was considered to be easily achieved. Considering various countermeasures, change in the initial investment decision in chloroform adsorption collection (investment amount: approximately 66 million yen), alteration of manufacturing operation that promoted chloroform collection, and alteration of waste treatment practices were selected. Based on the FY 2003 performance, the following impacts were simulated:

- Impact related to alteration of the waste management practice
 The factory-wide waste fluid incineration treatment was changed; activated sludge treatment was adopted. Change of the practice reduced the waste management cost and collected more chloroform for reuse. This measure led to an annual economic benefit of approximately 54 million yen (including annual energy-saving benefit of approximately 33 million yen).

- Significant reduction of chloroform emissions
 Historically, 96% of the chloroform emission was collected for reuse, but the rest was emitted as waste gas or fluid. Investment in a chloroform-collecting equipment further reduced emissions of the waste gas. Consequently, a significant more emissions reduction (73% reduction) was achieved than initially targeted in the company’s Environmental Voluntary Action Plan that aimed at reduction by 10% below the FY 1999 emissions level by FY 2003.
- Significant reduction in CO₂ emissions
 As a result of review of the waste management practice, it was decided that the waste liquid incineration treatment was completely halted. This led to annual CO₂ emissions reduction of 2,328 tons. This amounted to be 41% of the CO₂ emissions-reduction target set in the company's Environmental Voluntary Action Plan that aimed at 10% reduction (5,647 tons per year) below the FY1999 level.

(6) Conclusion
As shown in this case example, MFCA was considered to be extremely effective in identifying material losses and to practically assist an organization's environmental management. Furthermore, it was also noted that the most critical issue in the MFCA implementation was difficulty in its calculation at the introduction phase. In order to overcome this issue, we introduced a system using the mission-critical enterprise system called “SAP R/3”. This system enabled the automatic MFCA calculation for all the products manufactured at the Osaka factory, the Onoda factory, and the Tanabe Seiyaku Yoshiki Factory Co., Ltd. However, there remain issues including an effective MFCA introduction of newly merged company sites and application of MFCA for a supply chain.
Case 6 Canon Inc.
Production characteristics: Dissolution, molding, machining (cutting-out, pressing and grinding), and rinsing of lens material

(1) Organizational profile
One of the products manufactured by Canon Inc. (hereafter referred to as “Canon”) is the lens used for single-lens reflex camera and broadcast camera. The company’s lens-manufacturing factory is located in Utsunomiya, Tochigi, Japan. The total employees of Canon numbered 25,412 as of the end of 2008. The company’s sales were 2,721.194 billion yen with a capital of 172.746 billion yen.

The process selected for this project was a manufacturing process of lens products used for cameras. Canon successfully achieved to introduce MFCA through collaboration with its supplier in order to concurrently reduce cost and environmental impacts by technological innovation.

(2) Material flow model of Main Target Process/es
Sources of material losses are described below:

i) Manufacturing process by a glass-processing manufacturer: both cutting-out and pressing were conducted by a supplier. These processes generated a significant amount of material losses; and

ii) Lens-manufacturing process at the Canon Utsunomiya factory: approximately 50% of the cut-out material and approximately 30% of the pressed material became material losses. At the same time, a significant amount of operating materials such as cutting-oil and grinding-material also became material losses.

![Image of products and materials](Figure 6.1 Image of products and materials)
Material flow model of the selected process is illustrated in Figure 6.2 below:

![Material Flow Model Diagram]

Figure 6.2 Material flow model of the selected process (MFCA boundary)

(3) Description of material losses
The types of material losses included the following:

- Sludge from cutting and grinding wastes generated in the cutting out and pressing processes in supplier;
- Sludge generated from the grinding and other processing of glass material in Canon; and
- Operating materials that were managed along with sludge upon disposal.

(4) Findings through MFCA analysis
Conventional production management and MFCA analysis indicated the following results:

- Conventional production management
 - Pressed material: yield rate 99% (i.e., loss 1%), and
 - Cut-out material: yield rate 98% (i.e., loss 2%).

The conventional production management tools were based on the number of final products. However, because MFCA highlighted the gap between input amount and output amount (product and material loss) in consideration of mass balance, significant room for improvement (i.e., significant opportunity for reduction of costs and material losses) was revealed by the MFCA analysis as indicated in the followings:

- MFCA analysis
 - Proportion of material loss,
Pressed material: approximately 30%, and
Cut-out material: approximately 50%.

Result of the calculation in the case of the pressed material is illustrated in Figure 6.3:

Conventional Production Management

Glass material manufacturer → Glass works in stock → Processing into lenses → Quality control → Next process (99%)

Material Flow Cost Accounting

Glass material manufacturer → Glass works in stock → Processing into lenses → Quality control → Material loss cost (32%) → Treatment

Cost of final product (68%)

Figure 6.3 Comparison between conventional production management and MFCA

(5) Targeted points to be improved or improvements based on MFCA analysis

MFCA analysis was conducted through collaboration with the glass material supplier. Sharing material loss-related information, various measures for reduction of the material losses from the grinding process were discussed and the following measures were proposed:

- Near-shaping of the pressed material (lens for single-lens reflex camera); and
- Change from the cut-out material to the pressed material (lens for the TV broadcasting camera).

Figure 6.4 Conventional production and production based on new materials for lens production

Collaborating with the supplier, the new materials for the lens production called ‘Near-shaping’ was developed as shown in Figure 6.5.
(6) Conclusion

Improvements through MFCA analysis based on the comparison with the conventional manufacturing operation are shown below:

(i) **Positive impacts on the glass material supplier**

Raw material input was reduced by 85% through improvements based on the MFCA analysis. Likewise, energy consumption was reduced by 85% and waste volume was reduced by 92%. Positive economic (increased cost-competitiveness) and environmental impacts were identified through various outcomes including reduced material use, and less energy consumption. In addition, as other positive impact based on the MFCA analysis, the working condition was improved through reduction of working hours in hot environment.

(ii) **Positive impacts on Canon**

The sludge volume was reduced by 50% through improvements based on the MFCA analysis. Furthermore, volume of oil and abrasive powder used in the grinding process were reduced by 40% and by 50%, respectively. Positive environmental impacts from less material, energy, and water inputs as well as less sludge generation were identified. Simultaneously, positive economic impacts were seen from reduced purchased price, less operations, less purchased amount of
operating materials, less handling costs of sludge, waste oil and waste fluid. In addition, the frequency of on-site operations such as sludge treatment and replenishment of abrasive powder were reduced through improvements based on the MFCA analysis.

(iii) Positive impacts on the supply chain (the glass material supplier and Canon)
The glass material supplier and Canon shared the information related to material losses and cooperatively worked to reduce the losses. This collaboration brought about positive environmental, economic and technological impacts, enhancing market competitiveness and realizing a win-win relationship between the glass material supplier and Canon.
(1) Organizational profile
TS Corporation is located in Oyama-shi, Tochigi Prefecture, Japan. The total factory employees numbered 47 in 2007. The company’s capital was 20.4 million yen. The process selected for this project was the manufacturing process of a stainless-steel.

(2) Material flow model of Main Target Process/es
Figure 7.1 indicates the material flow and the selected process (MFCA boundary):

As shown in Figure 7.1, the process consisted of punching, finishing (detaching and finishing operations) and bending processes.

In this project, the punching process and finishing process were defined as a quantity centre. Further, raw metal plates were the subject material for MFCA analysis. System and energy costs were calculated by proportion of the number of raw material plates used for the process.

As a characteristic of calculation, in case of the made-to-order production or a wide variety of products in small quantities, multiple types of products were normally punched out from a single plate. Therefore, it was difficult to determine the raw material amount for a single product to conduct the MFCA analysis. In order to overcome this issue, the material flow per the single plate (sheet thickness 1.5mm) — the main raw material for the subject process — was traced.

(3) Description of material losses
Input and material loss at each stage of the manufacturing processes are described in the followings:
- Punching operation: Metallic fragments were generated as material losses. The fragments were gathered by material type and delivered to a recycling manufacturer;
- Detaching operation: Left-over materials after the punching process became material losses. The materials were gathered according to type of material and delivered to a recycling manufacturer. In addition, if the left-over materials were large enough to be used for the production process, the left-over materials were re-input into the punching operation; and

- Finishing operation: After the detaching operation, protuberances at connecting points with the material plates were deburred by a file. Fine metallic powder was generated during this operation and became material losses.

(4) Findings through MFCA analysis

Table 7.1 Material flow cost matrix

<table>
<thead>
<tr>
<th>Cost items</th>
<th>Punching</th>
<th>Finishing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total new input costs</td>
<td>386.0</td>
<td>96.0</td>
</tr>
<tr>
<td>New input MC</td>
<td>245.1</td>
<td>0.0</td>
</tr>
<tr>
<td>New input SC</td>
<td>123.6</td>
<td>90.0</td>
</tr>
<tr>
<td>New input EC</td>
<td>17.3</td>
<td>6.9</td>
</tr>
<tr>
<td>Transferred MC</td>
<td>0.0</td>
<td>132.2</td>
</tr>
<tr>
<td>Transferred SC</td>
<td>0.0</td>
<td>66.7</td>
</tr>
<tr>
<td>Transferred EC</td>
<td>0.0</td>
<td>9.3</td>
</tr>
<tr>
<td>Total input costs per process</td>
<td>390.1</td>
<td>300.1</td>
</tr>
<tr>
<td>Input MC</td>
<td>245.1</td>
<td>132.2</td>
</tr>
<tr>
<td>Input SC</td>
<td>123.6</td>
<td>156.5</td>
</tr>
<tr>
<td>Input EC</td>
<td>17.3</td>
<td>16.2</td>
</tr>
<tr>
<td>Total product cost</td>
<td>208.2</td>
<td>304.8</td>
</tr>
<tr>
<td>Product MC</td>
<td>132.2</td>
<td>132.2</td>
</tr>
<tr>
<td>Product SC</td>
<td>156.5</td>
<td>156.5</td>
</tr>
<tr>
<td>Product EC</td>
<td>16.2</td>
<td>16.2</td>
</tr>
<tr>
<td>Material loss cost</td>
<td>112.9</td>
<td>0.1</td>
</tr>
<tr>
<td>Material loss MC</td>
<td>10.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Material loss SC</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Material loss EC</td>
<td>8.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Material management cost</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Salable value</td>
<td>-1.0</td>
<td>-1.0</td>
</tr>
</tbody>
</table>

Figure 7.2 Flow chart with data

It was found that costs for material loss accounted for approximately 40% of input costs, more than 60% of which were related to the input material. Also, it was found that majority of the material costs were from the punching process. Volume of the products was slightly less than 60% of the input materials, which was lower than the yield ratio calculated by the company.

(5) Targeted points to be improved or improvements based on MFCA analysis

Various improvement measures throughout all the operations were considered, including the followings:
- Introduction of a checking system for nesting operation (operation for setting a layout for punching multiple products from a single plate);
- Prioritization for manufacturing of repeatedly ordered products;
- Grouping of the multiple products for greater efficiency; and
- Adjustment of production-schedule at the phase of order-reception and order-placement.

(6) Conclusion
Although individual yield rates for every nesting had been known and managed prior to the MFCA application, the MFCA analysis made it possible to set clear targets for a total yield rate rather than the individual yield rates, and that the ground was fostered in which each employee was able to propose improvements from the operations that they were engaged in.

On the other hand, several issues for effective MFCA application were also identified, including the followings:

- Understanding of the purchase volume or usage volume of a wide variety of materials according to type; and

- Introduction of an automatic data output system for the NC turret punching-machine in order to reduce additional labor costs for transcription of nesting-design instructions by operators.
Case 8 Katagiri Seisakusho Co., Ltd.
Production characteristics: Manufacturing process of a cold forging product

(1) Organizational profile
Katagiri Seisakusho Co., Ltd. (hereafter referred to as “Katagiri Seisakusho”) manufactured precision cold forging, using cold forging technology, in order to manufacture automobile parts and other precision cold forging parts, as well as the manufacture and sale of super-abrasive tools. The company’s employees numbered 260 at the time of the project. The company’s sales were 4.5 billion yen (FY 2007). The company’s capital was 70 million yen (FY 2007).

The objective of this project was twofold:
- To establish an indicator for process improvement and cost reduction, and
- To connect it with the goals of enhancing quality, resource-saving, and energy-saving which are raised as ISO 9001 and ISO14001 policies, and to identify issues such as effective use of resources, productivity and quality improvements.

(2) Products and processes subject to MFCA implementation and their characteristics (material flow model of main target processes)
The target process was the manufacturing process for AT SOL housing. Further, the selected processes consist of the followings:
- Cutting process which involves cutting approximately. 4 m rod materials into several hundred materials using a round saw;
- Annealing process, lubrication process, and forging process which were repeated three times each;
- Machining process which involved machining to conform with drawing specifications of the client; and
- Heat treatment and plating process at an affiliated company, and the in-house inspection, and shipment (packaging) process.

Although the annealing, lubrication, and forging processes were conducted 3 times each and conducted at different locations, little material losses were generated from these processes; these processes were considered as one quantity centre (see Figure 8.1).

![Figure 8.1 Input and output at each quantity centre](image)
(3) Description of material loss
Following material losses were identified during the course of the project:

- **Losses from each process**
 - Cutting process: rod mill ends, swarf, defective items;
 - Annealing process: defective items;
 - Lubrication: water, chemical agent, steam;
 - Forging: defective items;
 - Cutting work: wash oil, swarf, defective items; and
 - Inspection: defective items.

- **MFCA data definition**
 - The volume of disposed mill ends generated from the cutting process was determined from the number of materials that could be obtained from one rod and the number of used rods after cutting;
 - As the annealing and lubrication processes treated other materials not included in this project, the time and volume of the material loss for this project was calculated from the number of treated items;
 - System costs included the machining oil and cutting blades used in cutting, the nitrogen gas used in annealing, heavy oil used for lubrication treatment (boiler), mold used in forging, and cutting tools used in machining;
 - Electricity costs that accounted for energy costs were aggregated for the entire factory, and were calculated by proportionally allocating them according to the number of the main equipments; and
 - Electricity costs for the annealing process which accounted for a significant proportion of the electricity consumption was calculated from the number of target products handled at the annealing process.

(4) Findings through MFCA analysis
As shown in Table 8.1, the most significant material losses were identified in the QC 3 (machining process) where 25% of the input materials became material losses. The next largest losses were identified in QC 1 (cutting process) where approximately 8% of the input materials became material losses.
Table 8.1 Material output volume

<table>
<thead>
<tr>
<th>Type of material cost</th>
<th>Item type</th>
<th>Units</th>
<th>Cutting</th>
<th>Annealing, lubrication, processing and forming</th>
<th>Machining</th>
<th>Outsourcing</th>
<th>Inspection/shipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output (Products)</td>
<td>Products (intermediate products) for next process</td>
<td>kg</td>
<td>38603.5</td>
<td>345487.9</td>
<td>26841.1</td>
<td>27793.7</td>
<td>27535.2</td>
</tr>
<tr>
<td>Emissions and wastes</td>
<td>Quantity of water, chemical agents, cutting oil, etc.</td>
<td>kg</td>
<td>16.2</td>
<td>1591.9</td>
<td>723</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Valuable materials</td>
<td>Quantity of main materials</td>
<td>kg</td>
<td>3569.3</td>
<td>69.7</td>
<td>9396.1</td>
<td>0</td>
<td>139.1</td>
</tr>
</tbody>
</table>

It could be seen from Table 8.2 that material loss costs (MC) accounted for a large portion of the material losses.

Table 8.2 Material flow cost matrix (units: JPY 1,000)

<table>
<thead>
<tr>
<th>Material cost</th>
<th>Energy cost</th>
<th>System cost</th>
<th>Waste management cost</th>
<th>Sub-total</th>
<th>Selling price for recycled materials</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>15,683.0</td>
<td>893.4</td>
<td>13404.4</td>
<td>29,980.9</td>
<td>29,980.9</td>
<td></td>
</tr>
<tr>
<td>Material loss</td>
<td>42.6%</td>
<td>2.4%</td>
<td>36.4%</td>
<td>81.5%</td>
<td>84.6%</td>
<td></td>
</tr>
<tr>
<td>Waste/recycle</td>
<td>4,674.3</td>
<td>322.4</td>
<td>1,697.6</td>
<td>6,694.3</td>
<td>6,694.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.7%</td>
<td>0.9%</td>
<td>4.6%</td>
<td>0.0%</td>
<td>18.2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110.3</td>
<td>110.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1331.2</td>
<td>-1220.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3%</td>
<td>0.3%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-3.4%</td>
<td>-3.4%</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>20,357.3</td>
<td>1,215.8</td>
<td>15,102.1</td>
<td>36,785.4</td>
<td>35,454.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>55.3%</td>
<td>3.3%</td>
<td>41.1%</td>
<td>0.3%</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

(5) Targeted points to be improved
Focus was placed on improvements of the “machining process” and the “cutting process” that were identified to cause significant material loss costs.

- Machining process
 In this process, more than 85% of MC was from swarf. Generally, by improving the forming method in order to match the forging shape with the finished machining shape as much as possible, the amount of swarf was dramatically decreased from the machining process. In other words, this measure leads to higher yield ratio. However, this was not implemented this time. The reason for non-implementation of this measure was the following three points:

 - Forging processes, as well as annealing and lubrication treatment processes will increase, and costs may also increase;
 - Forging surface roughness may be increased by reducing the machining operation; and
 - The material composition and performance of parts can be changed by changing the forging shape, and they might not conform to the needs of clients.
Cutting process
In the cutting process, improvement measures were implemented for two purposes: reduction of swarf; and reduction of mill ends. In reducing swarf, blade thickness was made thinner. This was expected to reduce swarf by 21%. In reducing mill ends, reuse of the mill ends was implemented. This was expected to lead to 69% less mill ends than before the introduction of this improvement measure.

(6) Conclusion
The following impacts were identified through the MFCA implementation:

- All input costs, product costs, and material loss costs were clarified;
- Breakdown of cost for material losses per process was also clarified;
- Improvement measures could immediately be simulated; and
- Transparency of problematic areas was increased.

In the future, it was desirable to summarize and implement improvement measures identified during this project. The company will conduct process improvements and cost reductions, and introduce these measures in other processes as a means of realizing the effective use of resources, improving productivity, and improving quality. In addition, the company will make plans to link these activities with reduction of environmental impacts as targeted under the company’s plan for the ISO14001 activities. In the future, the company would also like to link the MFCA related activities with the product design phase.
(1) Organizational profile
Mitsuya Co., Ltd. (hereafter referred to as “Mitsuya”) was involved in plating of gold, silver, and nickel etc. In this project, MFCA was implemented to improve the nickel-plating process which has traditionally not been a focus for much improvement due to the fact that the unit price of nickel was not high. The company’s employees numbered 299 at the time of the project. The company’s sales were 4.39 billion yen (FY 2007) and the company’s capital was 15 million yen.

(2) Products and processes subject to MFCA implementation and their characteristics (material flow model of main target processes)
- Target products and range of processes
Metal items to be plated were not selected for the MFCA analysis, as it was rare for the products subject to being plated to become material losses. In this project, one of the plating materials, nickel and its plating process were selected for the MFCA analysis.

- Manufacturing processes and quantity centres
Manufacturing processes consist of plate-processing, water-rinsing (dragging out), and inspection. In order to understand the nickel flow that was not plated and washed away with water, MFCA was implemented by defining the entire process as a single quantity centre as indicated in Figure 9.1.

![Figure 9.1 Input and output at the quantity centre](image)

(3) Description of material losses
- Losses from each process
 - Nickel detached from defective items as identified at the time of inspection;
- Nickel included in the wastewater; and
- Indirect (operating) materials such as hydrochloric acid, boric acid, varnishing material, and water necessary for nickel plating.

- MFCA data definition
 - Material costs (MC): treatment costs of spalling fluid were included in the costs for material losses;
 - System costs (SC): depreciation costs for equipments were assumed to be zero in this project; and
 - Energy costs (EC): electricity costs.

(4) Findings through MFCA analysis
Input and output flow in the selected process was identified as shown in Table 9.1:

<table>
<thead>
<tr>
<th>Table 9.1 Input and output in the subject process</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE Figures have been altered for publication. Units are in kg.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nickel plating</th>
<th>Material loss</th>
<th>In-process recycling</th>
<th>Emissions, waste</th>
<th>Valuable recycling</th>
<th>Total material loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel within product plating</td>
<td></td>
<td></td>
<td>429.0</td>
<td>0.0</td>
<td>429.0</td>
</tr>
<tr>
<td>Total good items in next process</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-process recycling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Emissions, waste</td>
<td></td>
<td></td>
<td>429.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valuable recycling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total material loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>429.0</td>
</tr>
</tbody>
</table>

Total material loss consisted of indirect (operating) materials (i.e., chlorine, boric acid, brightening agent, water), and the nickel that did not become products.

As shown in the figure above, emissions and waste amounted to be 429 kg, the most significant material losses of all. These losses consisted of the indirect (operating) materials such as hydrochloric acid, boric acid, varnishing material, and water for nickel-plating, as well as nickel (amount of nickel: 25 kg).

The ratio of SC was significant. Furthermore, material loss costs were 8,400 yen. Moreover, waste management costs were 5,500 yen.

<table>
<thead>
<tr>
<th>Table 9.2 Material flow cost matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE Figures have been altered for publication. units: 1000 yen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Material cost</th>
<th>Energy cost</th>
<th>System cost</th>
<th>Waste management cost</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products</td>
<td>16.5</td>
<td>343.5</td>
<td>23.3</td>
<td>383.3</td>
<td>429.0</td>
</tr>
<tr>
<td>Material loss</td>
<td>8.4</td>
<td>119.8</td>
<td>8.1</td>
<td>136.3</td>
<td>169.7</td>
</tr>
<tr>
<td>Waste/recycle</td>
<td>1.6%</td>
<td>22.8%</td>
<td>15%</td>
<td>5.5</td>
<td>10%</td>
</tr>
<tr>
<td>Subtotal</td>
<td>24.9</td>
<td>463.3</td>
<td>31.4</td>
<td>5.5</td>
<td>525.1</td>
</tr>
<tr>
<td>Products</td>
<td>16.5</td>
<td>343.5</td>
<td>23.3</td>
<td>383.3</td>
<td>429.0</td>
</tr>
<tr>
<td>Material loss</td>
<td>8.4</td>
<td>119.8</td>
<td>8.1</td>
<td>136.3</td>
<td>169.7</td>
</tr>
<tr>
<td>Waste/recycle</td>
<td>1.6%</td>
<td>22.8%</td>
<td>15%</td>
<td>5.5</td>
<td>10%</td>
</tr>
<tr>
<td>Subtotal</td>
<td>24.9</td>
<td>463.3</td>
<td>31.4</td>
<td>5.5</td>
<td>525.1</td>
</tr>
</tbody>
</table>
(5) Targeted points to be improved or improvements based on MFCA analysis
Although SC accounted for 88% of the material loss costs, this was proportionally distributed SC which was allocated to nickel that was washed away with water. For this reason, a focus was placed on improvement of MC.
Of MC, while 8,400 yen became material losses, this was the total plating material which was washed away with wastewater during the water-rinsing process. Nickel which had been washed away with wastewater all became material losses. This suggested that 8,400 yen was disposed of every month from the nickel plating process. Likewise, it was necessary to consider these losses in combination with the waste management costs (5,500 yen). Reduction of the amount of the nickel material that flowed to the water-rinsing tank led to reduced costs for the material loss and the waste management.

(6) Conclusion
Reduction of the nickel material flowed to the water-rinsing tank was found to be a key issue. The same could be applied to processes in use of other plating-materials. This issue was considered to be related to the drainage system throughout the facility. In this regard, this issue was recommended to be considered from the perspective of equipment investment. Furthermore, in this project, water was not fully taken into consideration, while water was used in various ways including adjustment of plating fluid and the water-rinsing process, etc. In order to fully evaluate costs associated with the material losses in the process, water should be thoroughly traced and calculated.
As MFCA can be applied to other lines, it was desirable to conduct a horizontal MFCA deployment to cover a perspective of an entire facility.
Case 10 KOSEI ALUMINUM CO., LTD.
Production characteristics: MFCA implementation in the manufacturing process for automobile aluminum wheels.

(1) Organizational profile
KOSEI ALUMINUM CO., LTD. is involved in production and sales of automobile aluminum wheels, major security parts for automobiles and motorbikes, various equipments and their parts. The factory for MFCA application was established in 1990, and as the mother factory for aluminum wheel production, is currently manufacturing pure wheels and aftermarket wheels for delivery to various automobile manufacturers. In order to identify losses for minimal staffing, improving productivity, and improving quality, MFCA was implemented for process improvement and cost improvement which eliminates waste, and to improve environmental performance by reducing energy costs through the efficient use of resources. The company’s employees numbered 349 at the time of the project. The company’s capital was 199.5 million yen.

(2) Products and processes subject to MFCA implementation and their characteristics
(material flow model of main target processes)
One of the models manufactured at the facility was selected as the target product and all production processes of aluminum wheels were selected as the target process for this project. Quantity centres consisted of dissolution, forging, cutting, machining, pressure measurement and appearance inspection, balance inspection, paint appearance inspection, and shipment process (see Figure 10.1).
Further, the dissolution process was shared by other non-selected processes for this project. In the dissolution process, molten metal was allocated to each holding furnace by a dissolution furnace facility (see Figure 10.1).

Figure 10.1 Input and output per quantity centre
(3) Description of material loss
- Losses from each process
 - Material losses: additive loss, coating loss, auxiliary materials, and operating materials; and
 - In-process recycling: oxide film, oxidation loss, hot top-materials, swarf, and defective items.
- MFCA data definition
 - The per unit weight of input volume and turnover volume for each process, except for the dissolution process, were multiplied. As the dissolution process was conducted by a common facility, each input material was calculated by multiplying the total allocated weight of molten metal by the target line ratio and the target model production ratio.
 - A standard unit cost was used for aluminum material, and for materials which were also diverted to other models, calculation was conducted using a cost proportionally divided by the production ratio of the subject product, based on the weight cost information for the materials used actually for the process.
 - The aluminum oxide produced from the dissolution process was recovered, its treatment was outsourced, and it became one of the reclaimed materials for input to the subject process.

(4) Findings through MFCA analysis
Out of 135 tons of material losses, the in-process recycling quantity was found to reach 117 tons, or approximately 87% of the material losses. This finding indicated importance of undertakings to reduce generation of material losses that flowed to in-process recycling.

Table 10.1 Material input/output amount

<table>
<thead>
<tr>
<th>QC1</th>
<th>QC2</th>
<th>QC3</th>
<th>QC4</th>
<th>QC5</th>
<th>QC6</th>
<th>QC7</th>
<th>QC8</th>
<th>QC9</th>
<th>QC10</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC item categories</td>
<td>Item name</td>
<td>Unit</td>
<td>Dissolution</td>
<td>Forging</td>
<td>Cutting</td>
<td>Machining</td>
<td>Pressure measurement, appearance inspection</td>
<td>Balance inspection</td>
<td>Coating</td>
</tr>
<tr>
<td>Output (product)</td>
<td>Good items from next process</td>
<td>Quantity of good items</td>
<td>kg</td>
<td>224635.6</td>
<td>231710.5</td>
<td>40278.5</td>
<td>30759.1</td>
<td>47259.0</td>
<td>31690.6</td>
</tr>
<tr>
<td>In-process recycling</td>
<td>Quantity of aluminum material recycling (defective items, swarf, hot top material, etc.)</td>
<td>kg</td>
<td>0.0</td>
<td>770.0</td>
<td>40790.4</td>
<td>69917.8</td>
<td>638.0</td>
<td>3817.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Emissions, material loss</td>
<td>Emissions, material loss (quantity (additive loss, coating loss, etc.)</td>
<td>kg</td>
<td>0.0</td>
<td>26.0</td>
<td>9.7</td>
<td>257.9</td>
<td>25.5</td>
<td>0.0</td>
<td>9519.3</td>
</tr>
<tr>
<td>Valuable material</td>
<td>Quantity of valuable material loss (aluminum oxide)</td>
<td>kg</td>
<td>7871.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Material loss costs accounted for 25.4% of total costs as shown in Table 10.2.

Table 10.2 Material flow cost matrix

<table>
<thead>
<tr>
<th>Material loss costs accounted for 25.4% of total costs as shown in Table 10.2.</th>
</tr>
</thead>
</table>

NOTE Figures have been altered for publication. Units: JPY 1,000.

<table>
<thead>
<tr>
<th>Material cost</th>
<th>Energy cost</th>
<th>System cost</th>
<th>Waste management cost</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products</td>
<td>218.2</td>
<td>24.4</td>
<td>791.0</td>
<td>321.7</td>
</tr>
<tr>
<td></td>
<td>49.9%</td>
<td>5.6%</td>
<td>18.1%</td>
<td>73.6%</td>
</tr>
<tr>
<td>Material loss</td>
<td>47.4</td>
<td>20.4</td>
<td>43.1</td>
<td>111.0</td>
</tr>
<tr>
<td></td>
<td>10.9%</td>
<td>4.7%</td>
<td>9.9%</td>
<td>25.4%</td>
</tr>
<tr>
<td>Waste/recycle</td>
<td></td>
<td></td>
<td></td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0%</td>
</tr>
<tr>
<td>Subtotal</td>
<td>265.6</td>
<td>44.8</td>
<td>122.3</td>
<td>437.0</td>
</tr>
<tr>
<td></td>
<td>60.8%</td>
<td>10.3</td>
<td>28.0%</td>
<td>1.0%</td>
</tr>
</tbody>
</table>

(5) Targeted points to be improved

Through MFCA analysis, the followings were found to be key issues for improvement:

- Reduction of the internally recycled material losses;
- Improvement of yield ratio; and
- Improvement of coating efficiency.

- Reduction of internally recycled material losses
 As quantity of in-process recycling was identified to be significant, measures to reduce defective products during each process played key roles. 25.4% of the total cost was from the material losses, and the material losses generated from the machining process was the largest of all.

- Improvement of yield ratio
 Material losses (hot top and swarf) generated during the machining process and cutting process were re-input as returned materials. As returned materials were re-dissolved for reuse and such materials were hardly considered as material losses. However, as such material losses carried over energy cost and system cost from the initial production cycle, they were found to be significant losses from a cost perspective. It was surmised that improving yield ratio and lowering material loss ratio were key improvement measures.

- Improvement of coating efficiency
 Material costs at the coating process were also found to be substantial. Significant amount of coating was not added to intermediate products; increasing coating efficiency was also a key issue.

(6) Conclusion

MFCA was implemented toward a certain model of product in one specific line during the course of this project. As dissolution process was involved, there were returned materials (i.e., hot top, swarf, and defective items) that were returned to the dissolution process without proceeding to the next process as material losses. By highlighting the quantities and evaluating cost of such materials, key issues could be specified.
In the future, countermeasures to these issues will be steadily implemented. In addition, their deployment toward other lines and models will be implemented as well. Moreover, it was surmised that MFCA could also be applied in daily on-site management, and toward the design and development of new models in the technology department. MFCA could be considered as a useful management tool in evaluating investment impacts and cost and environmental impacts.
Case 11 Shimizu Printing Inc.
Production characteristics: Small-to-medium business and printing process

(1) Organizational profile
Shimizu Printing Inc. (hereafter referred to as “Shimizu Printing”) is located in Tokyo, Japan. The company’s number of employees was 39 at the time of the project. Also, the company was capitalized at 38 million yen, with sales of 1 billion yen.

(2) Material flow model of Main Target Process/es
The selected process for this project was a printing process that involves one printing machine to print a single series (one product).

Figure 11.1 shows the work flow of the subject printing process:

Input materials consisted of ink, varnish, raw paper (paper and a plastic roll), and printing plate. Electricity, water, and personnel work was also considered, along with the input materials. A single printing machine was subject for the MFCA analysis and the machine was defined as a quantity centre. The printing machine was capable of printing products in several colors.

(3) Description of material losses
Relatively large scale of test printing etc. was conducted (register and color adjustments) before printing of products, and a focus was placed on this non-product related printing operation. The following three items were identified to be material losses, or the elements associated with material losses:

- Ink: ink was used for test printing etc. (register and color adjustments) in addition to a regular printing process,

- Electricity: electricity was consumed to run the printing machine for test printing etc. (register and color adjustments) in addition to a regular printing process, and
Personnel: labor was also devoted to the test printing etc. (register and color adjustments) in addition to a regular printing process.

In addition to calculating the loss costs above, the ratio of these costs per cost related to a single production process (printing cost of a single sheet) was calculated. Transition of the ratios was tracked on a yearly basis.

(4) Findings through MFCA analysis
Reduction of sheet losses (test printing etc.: register and color adjustments) through countermeasures implemented over a five-year period from FY 2003 (year of the MFCA introduction) were shown below:

Table 11.1 Transition of loss ratio over 5 years

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of sheets</th>
<th>Number of waste sheets</th>
<th>Loss ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>13,367,833</td>
<td>864,226</td>
<td>6.5%</td>
</tr>
<tr>
<td>2004</td>
<td>17,159,346</td>
<td>993,697</td>
<td>5.8%</td>
</tr>
<tr>
<td>2005</td>
<td>19,436,109</td>
<td>1,071,102</td>
<td>5.5%</td>
</tr>
<tr>
<td>2006</td>
<td>17,361,876</td>
<td>773,707</td>
<td>4.5%</td>
</tr>
<tr>
<td>2007</td>
<td>14,208,506</td>
<td>351,138</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

Figure 11.2 Transition of loss ratio over 5 years

Ratio of the loss cost (i.e., costs for ink, electricity and labor cost associated with the material loss) to variable expenses (ink, electricity, and labor cost) for various activities at the initial operation (register and color adjustments) were calculated. Transition in the loss cost ratio associated with implementation of countermeasures was also reviewed. The following showed transitions over five years:

Table 11.2 Ratio of loss to variable costs

<table>
<thead>
<tr>
<th></th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio of loss to variable costs</td>
<td>6.5%</td>
<td>5.8%</td>
<td>5.5%</td>
<td>4.5%</td>
<td>2.5%</td>
</tr>
</tbody>
</table>
(5) Targeted points to be improved or improvements based on MFCA analysis
Based on the MFCA analysis, process review was conducted from the viewpoints of both the operation and the equipment as shown in the following:

Operation-related
Change in conventionally accepted operational rules that caused the material loss and its associated losses was raised as one of the countermeasures. The measure included re-examination of the test printing operation, etc. (register and color adjustments).

Equipment-related
- Complete switch-over of ink: switching to an ink which enabled color matching with limited spare ink; and
- Printing machine: application of various options to stabilize color in a machine.

Future issue
- Understanding of the marginal loss rate,
- Integration with other operation-related material losses (printing accidents and errors related to the pre-printing process),
- Exploration of approaches to curtail material losses, and
- Identification of material losses including those generated before/after the printing process.

(6) Conclusion
One of the measures conducted based on the result of the MFCA analysis was an investment in new equipments. The introduced machine was the world's first printing machine with UV10 color + coater and inversion mechanism. As this printing machine enabled all processes from double-sided printing to surface treatment to be conducted altogether, it was possible to significantly reduce number of sheets for the test printing etc.
(1) Organizational profile

GUNZE Limited (hereafter referred to as “Gunze”) is an apparel maker that manufactures various products including men's and kids' underwear and is located in Osaka, Japan (a factory is located in Kyoto). As of March 31st, 2009, the number of employees numbered 9,041 on a consolidated basis. The company’s sales were 151.5 billion yen on a consolidated basis as of March 2009. The company’s capital was 26.1 billion yen.

(2) Material flow model of Main Target Process/es

The selected process for this project was a production line of inner wear at the Miyazu factory. Quantity centres were defined according to one processing unit. The detailed process flow was shown in Figure 12.1.

The selected process had the following characteristics:

- The process covered all the clothes-producing processes from weaving of original yarn to dyeing, cutting, and sewing;
- A major portion of the sewing process was conducted at several outsourced facilities; and
- Same processes were applied to production of other types of clothes, although apparel products consisted of an extremely wide variety of models, colors, patterns, and sizes.

All materials input into the process such as original yarn, parts, wrapping paper, colorant, and chemicals were subject for the MFCA calculation. The MFCA calculation was conducted for a product with one specific identification number.

In the weaving process, original yarn was woven to produce a single roll of cloth. At the following process, quantity was adjusted as intermediate products such as rolls of cloth that integrated more than one type of original yarn. For processes following the weaving, material quantity was calculated in units of partly-finished (intermediate) products.

Products were calculated as a single product according to product size (S, M, L etc.). There were cases where products passed either through a dyeing machine or through a bleaching machine;
costs associated with operation of these equipments including depreciation cost were considered discretely.

(3) Description of material losses
Various materials such as original yarn and colorants were input to each process, and materials loss were generated including defective products, cutting wastage, sewing wastage, and testing operations.

(4) Findings through MFCA analysis
Through MFCA analysis, the impact of defective products could be identified not only in terms of yield rate, volume of defective products, and residual volume, but also in terms of total cost. This ensured the significance of lowering the volume of the defective products. Observation of the production line and analysis of cause for defective products revealed that high defective rate was identified in some products but defective rates were generally low among many products; and As a production-term was very short, it was difficult to establish an effective countermeasure to minimize material losses within the mass-production term

Table 12.1 shows the material flow cost matrix and the flow chart associated with the process, respectively:

<table>
<thead>
<tr>
<th>Material</th>
<th>Material cost</th>
<th>Energy cost</th>
<th>System cost</th>
<th>Waste management cost</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good items (product)</td>
<td>84.30</td>
<td>5.13</td>
<td>105.59</td>
<td>195.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34.3%</td>
<td>2.1%</td>
<td>43.0%</td>
<td>79.4%</td>
<td></td>
</tr>
<tr>
<td>Material loss</td>
<td>26.46</td>
<td>1.97</td>
<td>20.71</td>
<td>49.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.8%</td>
<td>0.8%</td>
<td>8.4%</td>
<td>20.0%</td>
<td></td>
</tr>
<tr>
<td>Waste/recycling</td>
<td>1.43</td>
<td></td>
<td></td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6%</td>
<td></td>
<td></td>
<td>0.6%</td>
<td></td>
</tr>
<tr>
<td>Sub-total</td>
<td>110.76</td>
<td>7.10</td>
<td>126.31</td>
<td>1.43</td>
<td>245.60</td>
</tr>
<tr>
<td></td>
<td>45.1%</td>
<td>2.9%</td>
<td>51.4%</td>
<td>0.6%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

(5) Targeted points to be improved or improvements based on MFCA analysis
Based on the statements in clause 4, the most important target points at the Miyazu factory was to define an appropriate standard for newly used materials at the product development phase.

(6) Conclusion
Direct feedback of the MFCA analysis was not possible for the subject products as they were in the very short product cycle. As majority of the products in the Miyazu factory were made over the short term, the MFCA result could not be meaningfully applied to other items. However, the MFCA analysis could be meaningfully used to evaluate practice at the design phase. In addition, the MFCA analysis could be also used as a common production indicator for factories in frequent use of new materials and those in little use of new materials. One of the issues for effective use of MFCA is factory-wide development of a simple MFCA calculation tool, the associated evaluation approach, and its implementation.
Case 13 Kohshin Rubber Co., Ltd.
Production characteristics: Molding with complex material flow
(including in-process recycling)

(1) Organizational profile
Kohshin Rubber Co., Ltd. (hereafter referred to as “Kohshin”) produces a rubber sheet for flexible container bags for transportation. The company is located in Sendai City, Miyagi, Japan. The company’s employees numbered 357 at the time of the project. In addition, the company’s capital was 100 million yen at the time of the project.

(2) Material flow model of Main Target Process/es
The selected process for this project was a manufacturing process of an original rubber sheet for flexible container bags for transportation. The detailed flow of the material was shown in the Figure 13.1:

![Figure 13.1 Selected process for this project (MFCA boundary)](image)

The selected process had the following characteristics/steps:

- A compound was heated, dissolved, stretched in order to be formed into one film stretched by a rolling device. The film was rolled up in the calendar process (hereafter referred to as “process 1”). At this point, three rolls of film — a front film, interior film, and back film — were produced;

- Following the process 1, the front film, interior film, and foundation were adhered, being a single sheet (the roll in progress in the 108 process) in the laminator 108 process (hereafter referred to as “process 2”);

- In the next step, the roll in progress in the process 108 and the back film were adhered, being a single sheet (the roll in progress in the process 109). This process was called the laminator 109 process (hereafter referred to as “process 3”); and
Finally, in the roll inspection process (process 4), extra portions of the roll in progress were cut off, and the film was rolled up, becoming a product with length requested by a customer after inspection.

Based on the process noted above, four quantity centres — process 1, process 2, process 3, and inspection process - were defined. In this project, input materials were compounded substances and foundation film.

Furthermore, other characteristics of the MFCA calculation included the followings:

- Material losses from each process were re-input into the process 1. Although this did not result in material loss, system costs (SC) and energy costs (EC) were carried over with the re-input materials. Therefore, returned materials and remaining films were added to the weight of material losses in calculating an allocation ratio of SC and EC to products and material losses; and

- Under the approach taken by the current simple MFCA calculation tool, as the product in progress from the previous process was considered as the “material”. As the subject process contained the quantity centre that did not necessarily receive the product from the centre defined prior to the subject quantity centre, the calculation was adjusted in consideration of mass balance at each quantity centre.

(3) Description of material losses
Material loss generated in the subject process was the film attached to the foundation film. This could not be returned to the in-process recycling and ended up in a material loss.

(4) Findings through MFCA analysis
The following shows the material flow chart and the material flow cost matrix associated with the subject process:

![Material Flow Chart](image)

NOTE Figures have been altered for publication. Figures are in units of 1,000 yen.

Figure 13.2 Material flow chart for the targeted process
Table 13.1 Material flow cost matrix

<table>
<thead>
<tr>
<th>Material costs</th>
<th>Energy costs</th>
<th>System costs</th>
<th>Waste Management costs</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good items (products)</td>
<td>25,199.0</td>
<td>2,386.0</td>
<td>13,114.0</td>
<td>40,700.0</td>
</tr>
<tr>
<td>Material loss</td>
<td>3,463.0</td>
<td>784.0</td>
<td>3,191.0</td>
<td>7,439.0</td>
</tr>
<tr>
<td>Waste/recycling</td>
<td>279.0</td>
<td>279.0</td>
<td>0.6%</td>
<td>279.0</td>
</tr>
<tr>
<td>Sub-total</td>
<td>28,662.0</td>
<td>3,171.0</td>
<td>16,306.0</td>
<td>279.0</td>
</tr>
</tbody>
</table>

NOTE Figures have been altered for publication. Figures are in units of 1,000 yen.

(5) Targeted points to be improved or improvements based on MFCA analysis

Although material losses in a monetary unit were decreased by half through the in-process recycling, SC and EC accounted for approximately 43% of the cost associated with the material losses. Likewise, the largest portion of the material loss costs from the roll inspection process occurred due to generation of the edged materials and specification adjustments etc. As these material losses were largely due to the outputs (intermediate products) from the previous processes (process 1 to 3), it was necessary to consider measures to promote loss reductions based on the processes prior to the roll inspection process. Moreover, looking at a proportion of the total cost of the product, as was known from the manufacturing cost for one-meter of the product, the highest percentage of the cost were from the processes 1 and 2 which had relatively high input costs.

Reduced cost by implementing individual improvement measures and a total improvement measures were simulated using the simple MFCA calculation tool. Based on these results, the management decisions will be made to implement improvement measures.

(6) Conclusion

An advantage of MFCA application was that losses (per process and for overall processes) and impact of improvement measures through investments etc. could be expressed in a monetary unit. This provided useful information for the management in their decision-making on introduction of new technologies and on fundamental reforms in production processes. On the other hand, issues related the MFCA application included the followings:

- Control of on-site operational load in collecting MFCA related information for quantification and incorporation of such activities into operators’ daily tasks;
- Consideration of an interface for linking a cost management system with a daily report; and
- Coordination with ISO14001 activities.
(1) **Organization profile**
Shinryo Co., Ltd. produces brown sugar products. The company’s number of employees was 36. Furthermore, the company’s capital was 26 million yen at the time of the project.

(2) **Material flow model of Main Target Processes**
The MFCA was applied to the processes from producing to packaging brown sugar products. The manufacturing processes included: “the manufacturing process of material brown sugar”, which is a series of procedures, starting with inputting raw materials, followed by dissolving, filtering, concentrating, and agitating them; and “the molding process”, that is, molding material brown sugar to meet the purpose of a given product, measuring, and placing in storage boxes. These two processes are defined as the quantity centre (QC) for the brown sugar production. The molded finished products are stored and dried in a drying room for one day before packaging and shipment. For consumer products, the finished products are packaged in small bags and then packed in carton boxes, while those for industrial uses are packaged in large bags. These packaging processes are defined as the QC for the product packaging.

In the manufacturing process of material brown sugar, raw sugar, molasses, invert sugar, water, and other materials are input. Meanwhile, the input for the product packaging process include small bags for packaging, large bags, carton boxes, packing tape, and polypropylene (PP) strapping band.

![Figure 14.1 Outline of Material Flow](image_url)

(3) **Description of material losses**
(i) Losses in manufacturing processes
- Off-specification products
Off-specification material brown sugar was generated in the both QCs, and such sugar was input again (or reused) in the manufacturing process when making the subject products next time.

- Losses from dropped products etc.
 Among brown sugar material, there were material losses during the molding, delivery, and packaging processes, such as those dropped on the floor, washed out during the cleaning of the material brown sugar manufacturing equipment, or discarded when cleaning automatic packaging equipment.

- Losses from packaging materials for raw sugar
 Upon purchasing raw sugar, it was contained in dedicated paper bags. All these bags were discarded after raw sugar was input in the manufacturing process. These costs were not highlighted in monetary units but they were actually considered losses in physical units.

- Losses from excessive packaging
 Packaging material losses were rarely generated within the manufacturing facility in terms of quantity. However, such materials were discarded at the time when customers purchased or used the products. In this light, excessive packaging should be considered as loss from the specification.

(ii) Definition of MFCA data
- Material costs: All input materials (raw sugar, bag-in-boxes, craft paper, washing water, packaging materials, auxiliary packaging material, etc.). For material brown sugar, newly input raw sugar, input of off-specification products, and work-in-process were calculated separately;
- Waste management costs: Waste management costs for raw-sugar paper bags were added to the calculation;
- Energy costs: electric power and heavy oil costs were included in the calculation; and
- System costs: Personnel, depreciation, and maintenance/repair costs were covered.

(4) Findings through MFCA analysis
- Off-specification products accounted for 5% of overall products. As they were all input again (reused) as raw sugar, it appeared that they did not entail any material losses. However, they practically generated losses such as system costs and energy consumption during the manufacturing processes. In addition, the absence of off-specification products led to greater output of the products and a reduction in ongoing night duties.

- Losses from dropped products and others comprised 5% of overall products, suggesting losses in material costs, system costs, and energy consumption. It was also necessary to consider their negative impact in connection with night work as is the case with off-specification products.
- The estimate indicated that the losses from packaging materials for raw sugar caused a significant cost burden.

- The losses from excessive packaging came to the fore when reviewing the quality and size of packing tape, as well as the way to apply PP strapping band.

(5) Targeted points to be improved or improvements based on MFCA analysis
- The losses from off-specification products and dropped products stemmed from muri (unreasonable), mura (uneven), and muda (wasteful) operations. Therefore, it was essential to tackle with operational improvement and loss reductions concurrently. Such improvements should not require any marked investment but still boost labor productivity (efficiency and operating rate) considerably and probably reduced night duties.

- With respect to the losses from packaging materials for raw sugar, it was necessary to consider how to push the relevant cost down to a reasonable level, in collaboration with raw sugar production makers. Addressing this issue was expected to bring benefits in terms of costs and environmental impacts.

- For the losses from excessive packaging, it was important to consider them from a standpoint of customers. The excessive packaging should be considered as waste for customers. Changing to less costly materials, rather than prioritizing the quality, should lead to cost reductions and better customer satisfaction.

(6) Conclusion
The MFCA analysis this time highlighted small issues where the company will have to keep up efforts to improve, and each small improvement should generate benefits. The resultant effects were expected to emerge in various forms, such as less resource consumption, higher labor productivity, improvement in labor safety and labor health, better customer satisfaction, less material loss, and cost reductions.

Among others, the following challenges remained for consistent MFCA analysis and improvement activities: improvement in daily reports, methods to collect data, development of expertise to read data, and how to make better communication between management and on-site workers.
(1) **Organizational profile**

KODAI SANGYO CO., LTD. (hereafter referred to as “Kodai Sangyo”) processes wooden materials for “household drain boards”. The company is located in Fukushima, Japan. The company’s employees numbered 39. In addition, the company is capitalized at 65 million yen with sales of 572 million yen at the time of the project.

(2) **Material flow model of Main Target Process/es**

The selected process for this project is processing of wooden materials for home-use “drain boards”. The detailed flow of the process is shown in Figure 15.1.

![Material flow model](image)

Figure 15.1 Selected process for this project (MFCA boundary)

The selected process contained the following characteristics/steps:

- Materials delivered from a supplier were stocked as input materials. Subsequently, they are naturally dried or artificially dried;

- The materials that have been dried to the specified moisture-content level were input into the process;

- The input wooden materials were firstly processed so that their length, width, and board thickness were consistent with a given design. Subsequently, hole-drilling, milling, and dowel insertion etc. were conducted as necessary; and

- In the assembly process, multiple parts were fixated by nails and adhesives etc. They were then inspected, packaged, and sent to a stock for finished goods. Products are shipped according to customer orders, and some products were returned in some cases.

The material-processing phases that generated entire material losses of the main materials were defined as a quantity centre. Post-assembly processes, packaging, material stocking and drying processes were not included in the scope of this project.
(3) Description of material losses
Among the delivered wood materials, those with excessively large knots and cracks were considered to be defective and called “rough wood.” The rough wood was provided to a material manufacturer/supplier at discounted price.

(4) Findings through MFCA analysis
Table 15.1 shows the material flow cost matrix associated with the process:

Table 15.1 Material flow cost matrix

<table>
<thead>
<tr>
<th>Material</th>
<th>Material cost</th>
<th>Energy cost</th>
<th>System cost</th>
<th>Waste management cost</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good items (Products)</td>
<td>300.0</td>
<td>20.0</td>
<td>220.0</td>
<td></td>
<td>540.0</td>
</tr>
<tr>
<td>Material loss</td>
<td>150.0</td>
<td>10.0</td>
<td>110.0</td>
<td></td>
<td>270.0</td>
</tr>
<tr>
<td>Waste/recycling</td>
<td>18.5%</td>
<td>1.2%</td>
<td>13.6%</td>
<td></td>
<td>33.3%</td>
</tr>
<tr>
<td>Sub-total</td>
<td>450.0</td>
<td>30.0</td>
<td>330.0</td>
<td></td>
<td>810.0</td>
</tr>
</tbody>
</table>

NOTE Figures have been altered for publication. Figures are in units of 1,000 yen.

The results of MFCA calculation suggested a need to consider optimal standardization in lumber sawing and inventory amounts, as 33% of material loss in mill-ends and swarf came from the material length that was based on product design and length of purchased materials.

(5) Targeted points to be improved or improvements based on MFCA analysis
Considering losses due to the effect of knots in materials (hereafter, “B-class products”), it was necessary to consider an option of selecting wood materials that did not contain knots before the processing (i.e., exclude the rough wood before manufacturing B-class products).

(6) Conclusion
The subject process involved living materials. Hence, statistical analysis of the input materials, products and material losses were necessary. The results of the MFCA systematization scheme indicated that the MFCA management system can be established based on three sources of information: information from the “sales management system” (in operation), information from the “accounting system” (in operation), and information from the “production management system” (under consideration for its introduction). Furthermore, in addition to this information, the MFCA management system will need master data in basic unit for the input materials that constituent products, as well as information on unit prices of materials and products.
The system shown in Figure 15.2 was a simplified MFCA calculation scheme and was considered necessary to be improved further for more accuracy and practicability. On the other hand, this scheme indicated that MFCA management system could be established in the form of a simple system. Likewise, speedy establishment of the system increased transparency of the flow related to material losses in the process, and was considered to enhance the company’s business performance.
III. Case Examples in the Non-manufacturing Industry
Case 16 JFE group
(JFE Engineering Corporation, JFE R&D Corporation, and JFE Techno Research Corporation)
Production characteristics: Construction

(1) Organizational profile
JFE group (JFE Engineering Corporation, JFE R&D Corporation, and JFE Techno Research Corporation) were involved in this project. Each company played the following roles:

- JFE Engineering Corporation (hereafter referred to as “JFE Engineering”): Implementation of construction work;
- JFE R&D Corporation: Direction of the entire project; and
- JFE Techno Research Corporation (hereafter referred to as “JFE Techno”): Implementation of MFCA analysis.

MFCA was cooperatively conducted by the three companies noted above. The application of MFCA for this kind of construction was rare, and the attempt undertaken this time was meaningful for pioneering the application of MFCA in the construction field.

JFE holdings, the holding company of these three companies, made sales of 326.040 trillion yen on a consolidated basis. Also, the company capital was 142.3 billion yen.

(2) Material flow model of Main Target Process/es
Table 16.1 describes the targeted work for this project.

<table>
<thead>
<tr>
<th>Materials</th>
<th>MFCA input categories</th>
<th>Material type (categories for MFCA application for this project)</th>
<th>Quantity and calculation approach for material cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing installations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New refrigerator</td>
<td>Newly added materials</td>
<td>Targeted construction</td>
<td>MC is calculated with the equipment costs estimated for the new refrigerator.</td>
</tr>
<tr>
<td>Hatch and floor</td>
<td>Newly added materials</td>
<td>Non-targeted construction</td>
<td>The estimated quantity of the new hatch and floor materials is clear and the estimated cost is used as the MC.</td>
</tr>
<tr>
<td>New installations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New refrigerator</td>
<td>Newly added materials</td>
<td>Targeted construction</td>
<td>MC is calculated with the equipment costs estimated for the new refrigerator.</td>
</tr>
<tr>
<td>Hatch and floor</td>
<td>Newly added materials</td>
<td>Non-targeted construction</td>
<td>The estimated quantity of the new hatch and floor materials is clear and the estimated cost is used as the MC.</td>
</tr>
<tr>
<td>Construction materials and fuel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection materials and fixtures</td>
<td>Operating materials</td>
<td>Both targeted and non-targeted construction</td>
<td>Although fuel is not calculated using EC, it is a part of the direct material costs for the construction, and it is deemed better to define it as operating material. However, this time, as it is included in the estimate as “** entire construction,” it was calculated by inclusion in ** entire construction.”</td>
</tr>
<tr>
<td>Transportation of equipments and materials, fuel used for the installation activity</td>
<td>Operating materials (EC is often used for calculations)</td>
<td>Both targeted and non-targeted construction</td>
<td>Although fuel is not calculated using EC, it is a part of the direct material costs for the construction, and it is deemed better to define it as operating material. However, this time, as it is included in the estimate as “** entire construction,” it was calculated by inclusion in ** entire construction.”</td>
</tr>
</tbody>
</table>
The targeted work was a renewal work for a large-sized refrigerating machine (dimensions: 5.3 \(\times \) 3 \(\times \) 3 mH, weight: 23 tons, and number of units: 3). Existing facilities were dismantled, removed, and replaced with new facilities (new refrigerating machine, hatch, and floor). Further, characteristics of material-flow related to the construction work were described in the followings:
- Little material flow was identified at the construction site, and
- No manufacturing operation was conducted at the site; those manufactured at an external facility were installed at the site.

Quantity centre was defined by dividing the construction project into the targeted construction work and the non-targeted construction work; no definition of a quantity centre based on the process flow was made. The reason for non-definition of the flow-based quantity centre was due to the fact that little material flow was present at the subject process.

Based on this approach, the project was divided as shown in the following:

- Targeted construction: originally planned construction to create added value (e.g., transport, replacement, and installation of the targeted equipments), and
- Non-targeted construction: disassembly, removal, boarding, and installation of protective materials for existing facilities (hatch, flooring). Although these activities were necessary from viewpoints of safety and actual implementation of the work, it was considered good to keep non-targeted construction at a minimum level from the MFCA viewpoint.

(3) Description of material losses
Determination of scope of the costs for calculation was one of the key points for this project. MFCA calculation was performed, using three types of approaches that defined different scopes of the costs for calculation, as shown in the followings:

- Approach 1: Evaluating total costs of both the construction outsourcer (owner) and the outsourcee (JFE group);
- Approach 2: Evaluating total cost of only the construction outsourcee (JFE group); and
- Approach 3: Evaluating total cost of the construction work only that excluded cost of the main facility.

Both originally planned construction approach (hereafter referred to as “A construction method”) and alternative construction approach (hereafter referred to as “B construction method”) were compared and evaluated based on the three approaches for the MFCA calculation. The material flow cost matrix calculation results are shown in the Figure 16.1 below (Figures for each evaluation approach/construction approach were shown as a proportion to the total cost generated by evaluation of the construction approach A by Approach 1).
(4) Findings through MFCA analysis
One of the key findings was that business compensation cost was included as a service cost for material losses in evaluating the construction method A by the Approach 1. Although they were an unavoidable cost from the project owner’s perspective, the MFCA-based evaluation made it possible to consider a relative advantage in each construction approach by incorporating such factors. At this point, the MFCA-based evaluation was considered to be effective.

(5) Targeted points to be improved or improvements based on MFCA analysis
Following points were identified as potential points for improvement:

(i) Evaluation with inclusion of the cost incurred by the outsourcer
- Total cost of the construction method B was 10% lower than that of the construction method A;
- Ratio of the material loss cost to the whole cost was estimated to be decreased from 15% to 12% by the construction method B. In addition, energy consumption was decreased by 44% through the construction method B; and
- Based on the two assumptions above, it was considered that the construction method B was the better approach.

(ii) Cost incurred by the construction company
Costs associated with the material losses including waste management cost were increased significantly by the construction method B. Likewise, cost of unintended construction was estimated to be reduced by one-forth by employment of the method B. Difference in the total costs was considered to be narrowed.

(6) Conclusion
MFCA application to the planning phase and the estimating phase enabled economic and environmental evaluations of multiple approaches, highlighting relative advantage of related
parties to the project. MFCA can be used to quantitatively understand advantage and disadvantage between outsourcer and the parties jointly engaged in the project. In addition, this case example was very advanced in that MFCA was applied to the construction activities. One of the key points identified from this example was that there were two ways of MFCA application that consist of MFCA from the viewpoint of the outsourcee, and the one that included both the outsourcer and the outsourcee. Furthermore, the latter approach enabled evaluation of the service from various viewpoints.
Case 17 GUNZE Limited
Production characteristics: MFCA application in clothing products distribution (Trial)

(1) Organizational profile
GUNZE Limited (hereafter referred to as “Gunze”) is an apparel maker that manufactures various products including men’s and kids’ underwear and located in Osaka, Japan (a factory is located in Kyoto). Gunze’s affiliated company is engaged in distributing activities of the Gunze’s products to retail stores located all over Japan. As of March 31st, 2009, the number of employees numbered 9,041 on a consolidated basis. The company’s sales were 151.5 billion yen on a consolidated basis as of March 2009. The company’s capital was 26.1 billion yen.

(2) Material flow model of Main Target Process/es
The selected process for this project is a clothing distribution. The detailed process was shown in the Figure 17.1.

![Material flow model](image)

This project was conducted on a trial basis. Characteristics of the subject process included the followings:

- Numerous types of products were subject for the MFCA analysis. Even with respect to men’s inner wear products, there were as many as 8000 product types for distribution, and several tens of thousands of product types according to size and color;
- Products were shipped to second distribution companies located throughout Japan; and
- It was necessary to track a wide range of physical product flow in the “Distribution MFCA”.

(3) Description of material losses
Logistic centre (LC) and distribution centre (DC) were defined as quantity centre. Further, following materials were subject for calculation:

- Material: products manufactured in a factory; and
- Auxiliary material: packaging materials and price tags attached to the material at LC and DC.
Losses from each QC
- LC: Product waste and Packaging waste
- DC: Packaging waste, Waste packing and price tags

MFCA calculation was conducted in the number of the products by tracing the inventory volume at the beginning and the end of the period, input and output volume at the LC and DC, and number of the transferred materials between LCs and DCs.

(4) Findings through MFCA analysis
Distribution costs were calculated in two ways as shown in Table 17.1: the distribution towards client; and the distribution not toward client. Table 17.1 indicated that 25.91% of the system costs were for the distribution not toward clients.

<table>
<thead>
<tr>
<th>Table 17.1 Calculation of the distribution costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution costs</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Products</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Material loss</td>
</tr>
<tr>
<td>waste/recycling</td>
</tr>
<tr>
<td>Sub-total</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Instead of a material flow model in physical units, diagrams for quantity centre and a diagram showing the material flow between quantity centres was produced based on information about the system costs (SC). A separate diagram was also created for calculation of CO₂ emissions instead of SC.

Figure 17.2 Material flow diagram with SC data
(5) Targeted points to be improved or improvements based on MFCA analysis
Reduction of returned products and more efficient logistics were important points in order to reduce material loss for higher economic performance. In this case, no material losses were generated from the inventory. However, long-term inventory means presence of products that did not meet market needs. Other issues also included cash flow and lowered sales value due to the products obsolescence.

(6) Conclusion
Although MFCA approach for the logistic industry had not been fully developed, the analysis in this project indicates a potential to evaluate loss generated through the entire material flow from manufacturing of apparel products to delivery. Especially, the MFCA analysis for this project highlighted the following points:

- Expected advantages of MFCA application
 - The application of MFCA resulted in loss reduction (e.g., reduction in returned products, transfer of products from one stockroom to another stock room, and long-term inventory) during course of the distribution process; and
 - It became easier to consider action and measures to reduce CO₂ emissions in the distribution sector through the MFCA analysis.

- Issue in the MFCA application
 As the distribution MFCA required handling of an extremely large volume of data, a systematic approach for an effective MFCA calculation was considered to be necessary.
(1) Organizational profile

OHMI BUSSAN, Inc. (hereafter referred as “Ohmi Bussan”) conducts plastic material recycling and sales recycled plastic materials. MFCA was implemented to accurately assess losses from processes in physical and monetary units, to gather basic data for process improvement and cost reduction, and to use the MFCA result as a source for decision-making when making an investment to curtail the identified losses. The company’s employees numbered 49. The company’s sales were 1.8 billion yen and the capital was 40 million yen (FY 2007).

(2) Products and processes subject to MFCA implementation and their characteristics (material flow model of main target processes)

- Target products and range of processes
 Recycled plastic materials were the selected product for this project. Pulverizing process, interim product stock, and mixed extrusion process were the selected processes for this project.

- Manufacturing processes and quantity centres
 - The subject recycling processes consisted of the following activities:
 ➢ Inventory where material losses recovered from the market were stored,
 ➢ Sorting and preprocessing process to sort raw materials for the process,
 ➢ Pulverizing and rinsing process that crushes the material into chips,
 ➢ Mixing process that mixes the material with additives, extrusion,
 ➢ Pelletizing process that processes the chips into pellets of equal size, and
 ➢ Quality-control process, packaging process, and shipment process.

Among the aforementioned processes, pulverizing process, interim product stockroom, mixing and extrusion process were defined as quantity centres. Input and output data are shown in Figure 18.1.

One of the characteristics of the recycling business was that fixed plans could not be made for purchasing raw materials. Raw materials were generally obtained when there was a supply. On the other hand, the recycler needed to provide a designated amount of the deliverables regardless of supplied amounts of the raw materials. This resulted in a large amount of long-term inventory, which was a point for potential improvement.
(3) **Description of material losses**
- Pulverization process: defective items, residual dross screening (material loss);
- Intermediate product stock: stock clearance fee; and
- Mixed extrusion process: defective items, packing material (material loss).

- **MFCA data definition**
 - Input, output, emission gas amounts, and performance data for each material were gathered;
 - Energy costs (EC) were allocated according to operating time and number of processes based on the measured values for the entire factory; and
 - System costs (SC) were allocated according to operating time and number of processes based on the measured values for the entire factory.

(4) **Findings through MFCA analysis**
As shown in Table 18.1, wastes with a market value in intermediate product stockroom were found to be substantial. Likewise, material losses generated in the pulverization process were found to be also substantial.
Table 18.1 Material input/output amount
NOTE Figures have been altered for publication.

<table>
<thead>
<tr>
<th>MC item categories</th>
<th>Item names</th>
<th>Unit</th>
<th>Pulverizing process</th>
<th>Interim stock</th>
<th>Mixed extrusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Products from previous process</td>
<td>Material input quantity</td>
<td>Kg</td>
<td>0</td>
<td>360000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Product quantity</td>
<td>Kg</td>
<td>0</td>
<td>320000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Material loss quantity</td>
<td>Kg</td>
<td>0</td>
<td>70000</td>
</tr>
<tr>
<td>Direct materials</td>
<td>Material input quantity</td>
<td>Kg</td>
<td>565000</td>
<td>780000</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>Product quantity</td>
<td>Kg</td>
<td>550000</td>
<td>650000</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>Material loss quantity</td>
<td>Kg</td>
<td>15000</td>
<td>130000</td>
<td>0</td>
</tr>
<tr>
<td>Output</td>
<td>Material loss: Emissions, and waste</td>
<td>Quantity of product</td>
<td>Kg</td>
<td>550000</td>
<td>970000</td>
</tr>
<tr>
<td></td>
<td>Sliver, etc.</td>
<td>Kg</td>
<td>6000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Material loss: valuable materials</td>
<td>Second-class items, raw materials stocked at the warehouse over the long-term, products in progress, completed product (interim stock), etc.</td>
<td>Kg</td>
<td>9000</td>
<td>200000</td>
</tr>
</tbody>
</table>

- MFCA cost evaluation (all processes)
 Material costs (MC) were identified to be the most substantial of all input costs as shown in Table 18.2.

Table 18.2 Material flow cost matrix
NOTE Figures have been altered for publication.

<table>
<thead>
<tr>
<th>Material cost</th>
<th>Energy cost</th>
<th>System cost</th>
<th>Waste management cost</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>54.2%</td>
<td>3.9%</td>
<td>27.8%</td>
<td>85.9%</td>
</tr>
<tr>
<td>Material loss</td>
<td>11.0%</td>
<td>0.1%</td>
<td>2.9%</td>
<td>13.9%</td>
</tr>
<tr>
<td>Waste/recycling</td>
<td>0.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-total</td>
<td>65.2%</td>
<td>4.0%</td>
<td>30.7%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

(5) Targeted points to be improved or improvements based on MFCA analysis
Countermeasures to control long-term retained inventory, mixed extrusion process additives, and sliver generated from the pulverization process were considered as prioritized points for improvement.

The interim stock amounted to be 200 tons, based on the assumption that the interim stock accumulated over the long-term in the stockroom (i.e., raw materials, intermediate products and completed products) accounted for 10% of the monthly end stock. It was recommended to reduce such stocked amount and the inventory-related cost (600,000 yen), and to increase sales in consideration of the stocked volume.

Additives used in the mixed extrusion process were extremely costly. Approximately five-ton of the additives were currently input monthly. Improved blending method will enable the recycler to curtail the amount of the additives. However, change in the blending method required replacement of facilities. This will increase system costs; cost-effectiveness from the increased
productivity by the new facility (i.e., reduced system costs) was recommended to be considered as well.

Approximately, six-ton of the sliver materials (material loss) were generated each month through the pulverization process. The amount of the sliver materials loss depended to a large extent on condition of the blade for the pulverizing machine. By reviewing the optimal period for the blade replacement, it will be necessary to curtail generation of the slivers, and to convert the subject material loss into product.

(6) Conclusion

Through the MFCA analysis, the input-output relationship at the recycling site was further understood. Even with respect to handling practice of intermediate products in a stockroom, level of its impact on the business was clarified. Likewise, this project became an opportunity to improve awareness of the material losses. Through in-depth understanding of “quantity × unit cost,” it became possible to understand the adverse affects of proceeding with business based on intuition.

Hereafter, by continuing to apply this know-how, measures for improved profitability will be promoted. In addition, the MFCA calculation tool used in this project will be a key tool for management. It is the Ohmi Bussan’s intention to play a role in building a recycle-based society through MFCA.
Case 19 Sanden Corporation
Service characteristics: Maintenance and cleaning service of equipments for retail stores

(1) Organizational profile
Sanden Corporation (hereafter referred to as “Sanden”) manufactures and sales automobile-related devices, vending machines, and equipments for retail stores. Along with the manufacturing activities, at its store-equipments department, Sanden also provides a total service that includes store-design and maintenance after the opening of store in addition to production and sales. The company employees numbered 2,853 on a non-consolidated basis and 8,750 on a consolidated basis. The company’s sales were 216.69 billion yen on a consolidated basis in 2008. The capital was 11.037 billion yen.

(2) Material flow model of Main Target Process/es
(i) Characteristics of services subject for MFCA analysis
Sanden provides off-site maintenance and cleaning services for used equipments at clients’ retail stores. MFCA was applied to this service flow. The clients were logistics and restaurant chain companies. Upon their closure of existing stores, refrigerator, showcases, shelves and other equipments occasionally became wastes. In one of such stores, for example, the amount of such wastes reached seven tons. According to industry source, a total of 4,113 stores were annually opened and 2,137 were closed. In other words, assuming that all equipments were disposed of, 14,959 tons of wastes were annually generated. However, among those disposed of, some of the used equipments were reusable and fulfill same functionality as new ones, being after maintenance and cleaning. Therefore, Sanden provided off-site maintenance and cleaning services for such equipments.

(ii) Definition of quantity centres
In consideration of the subject service flow, following two approaches were considered:

- Sanden: Subject for MFCA analysis as a provider for the service
- Client company: Subject for MFCA analysis as a receiver of the service

Materials used in the subject service:

- Sanden: Rinsing water, rinsing agents, spare parts, paint, and packaging material
- Client company: Used equipments and newly purchased equipments

Two quantity centres were established; one covered all material flows of the service provider (Sanden (upper part of Figure19.1)) and the other covered all material flows for the client company (lower part of Figure 19.1).
Figure 19.1 Material flow of maintenance and cleaning services

(3) Description of material losses
(i) Material loss
In Sanden’s material flow, spare parts were used to replace used parts. As the process concerned only replacement activities, input and outputs were equal. Furthermore, minor amount of other materials were used and disposed of. In the material flow of the client company, type of disposed equipments varied from store to store.

(ii) Definition of MFCA data
Weight-based information was collected on maintenance equipments and spares parts. For the material flow of the client company, number and weight-based data were assumed based on the proposal submitted by Sanden to the client company. In addition, energy cost and system cost were out of scope for this project.

(4) Findings through MFCA analysis
MFCA analysis revealed several equipments that did not necessarily require replacement although amount of such equipments were small and associated rooms for improvements were also small. Hence, simulation based on MFCA was conducted with broader scope of the analysis subject; all logistics companies and restaurant chain companies were covered and simulated through MFCA as shown in Tables 19.1 and 19.2. Table 19.1 shows the result based on the assumption that all the equipments in 2,137 closed stores were disposed of. Table 19.2 shows the result based on the assumption that all these equipments went through same service as the one Sanden provided. As Table 19.2 shows, if Sanden provided the service for all the 2,137 stores, this reduces amount of the input as well as the material losses by 6,411 tons. In other words, this will lead to a cost reduction of 4.957 billion yen; this is equivalent to 12,220 ton-CO₂ reduction.
Table 19.1 MFCA results of all logistics and restaurant chains (in case that all the equipments in the 2,137 closed stores were disposed of)

<table>
<thead>
<tr>
<th>Material and material cost</th>
<th>Quantity (ton)</th>
<th>%</th>
<th>Cost (million yen)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newly purchased equipment</td>
<td>28,791</td>
<td>65.8%</td>
<td>40,168.8</td>
<td>99.3%</td>
</tr>
<tr>
<td>Reuse of existing equipment</td>
<td>0</td>
<td>0.0%</td>
<td>0.0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Non-reuse of existing equipment</td>
<td>14,959</td>
<td>34.2%</td>
<td>0.0</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Sub-total of material quantity and cost: 43,770 (100.0%) 40,168.8 (99.3%)

Amount of waste and cost

<table>
<thead>
<tr>
<th>Material and material cost</th>
<th>Quantity (ton)</th>
<th>%</th>
<th>Cost (million yen)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-reuse of existing equipment</td>
<td>8,548</td>
<td>100.0%</td>
<td>0.0</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Sub-total of material quantity and cost: 8,548 (100.0%) 171.0 (0.5%)

Input

<table>
<thead>
<tr>
<th>Total input cost</th>
<th>40.168 billion yen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material cost</td>
<td>29.7%</td>
</tr>
<tr>
<td>Non-reuse</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>Material cost</th>
<th>29.7%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-reuse</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

(5) Targeted points to be improved or improvements based on MFCA analysis

Few logistics companies and restaurant chain companies enjoyed this service; a significant room for expansion existed. It is necessary that efficient use of material at the time of provision of this service should be considered and dissemination of this service should be boosted.

(6) Conclusion

MFCA analysis revealed that dissemination of the subject service improved business performance and resource efficiency in logistics and restaurant chain sectors. However, in case of mid-to-small sized chain stores and individually owned stores, it is occasionally difficult to reuse such equipments. In this respect, establishment of the maintenance and cleaning services for equipments at mid-to-small sized chain stores and individually owned stores is considered to be necessary in the future. In this respect, Sanden has been expanding its service to include mid-to-small sized chain stores and individually owned stores as potential customers in order to promote establishment of reusing system where the used equipments are maintained, cleaned and reused with same functionality as new equipments.

Table 19.2 MFCA results of all logistics companies and restaurant chain companies (all these equipments went through same service as the one Sanden provided)

<table>
<thead>
<tr>
<th>Material and material cost</th>
<th>Quantity (ton)</th>
<th>%</th>
<th>Cost (million yen)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newly purchased equipment</td>
<td>22,380</td>
<td>59.9%</td>
<td>27,846.2</td>
<td>78.4%</td>
</tr>
<tr>
<td>Reuse of existing equipment</td>
<td>6,411</td>
<td>17.2%</td>
<td>7,493.4</td>
<td>21.1%</td>
</tr>
<tr>
<td>Non-reuse of existing equipment</td>
<td>8,548</td>
<td>22.9%</td>
<td>0.0</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Sub-total of material quantity and cost: 37,339 (100.0%) 35,339.6 (99.5%)

Amount of waste and cost

<table>
<thead>
<tr>
<th>Material and material cost</th>
<th>Quantity (ton)</th>
<th>%</th>
<th>Cost (million yen)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-reuse of existing equipment</td>
<td>8,548</td>
<td>100.0%</td>
<td>171.0</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

Sub-total of material quantity and cost: 8,548 (100.0%) 171.0 (0.5%)

Input

<table>
<thead>
<tr>
<th>Total input cost</th>
<th>35.340 billion yen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material cost</td>
<td>34.1%</td>
</tr>
<tr>
<td>Non-reuse</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>Material cost</th>
<th>34.1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-reuse</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

(5) Targeted points to be improved or improvements based on MFCA analysis

Few logistics companies and restaurant chain companies enjoyed this service; a significant room for expansion existed. It is necessary that efficient use of material at the time of provision of this service should be considered and dissemination of this service should be boosted.

(6) Conclusion

MFCA analysis revealed that dissemination of the subject service improved business performance and resource efficiency in logistics and restaurant chain sectors. However, in case of mid-to-small sized chain stores and individually owned stores, it is occasionally difficult to reuse such equipments. In this respect, establishment of the maintenance and cleaning services for equipments at mid-to-small sized chain stores and individually owned stores is considered to be necessary in the future. In this respect, Sanden has been expanding its service to include mid-to-small sized chain stores and individually owned stores as potential customers in order to promote establishment of reusing system where the used equipments are maintained, cleaned and reused with same functionality as new equipments.
Case 20 Convenience store A
MFCA case example on the distribution and sales service

(1) Organizational profile
Distribution and sales service business consists of the purchase and sale of items. Among the various businesses engaged in this field, a convenience store adds value in terms of offering convenience to its customers. Toward this end, a convenience store chain runs many stores within a small commercial domain.
Japanese convenience stores sell a variety of products, including food, magazines, and groceries, and provide various services, including photocopying, reception for delivery service, and payment for utilities. MFCA was applied to a typical convenience store, located in a rural city in Japan.

(2) Material flow model of Main Target Processes

(i) Material flow in a convenience store
At a convenience store, the remaining items are categorized into those to be disposed of at the convenience store and those to be returned to the provider. Food products such as lunch boxes, sandwiches, and other types of processed bread have very short lifecycles and are disposed of at the convenience store. The MFCA analysis on the target convenience store showed that it disposed of approximately 40 kg of food products, thus resulting in an annual waste of 15 tons per store. At present, there are approximately 43,000 convenience stores in Japan. Reduction and recycling of food waste is one of the critical issues with regard to environmental conservation in the convenience-store industry.

In addition to this, a convenience store utilizes other materials in its business activity, such as sales slips; these materials become material losses upon the completion of an operation. Electricity for lighting, air conditioning, refrigeration of items, freezing and heating, and water are also utilized during its operations. All the electricity and water become waste heat and wastewater, respectively.

(ii) MFCA Approach for a convenience store
As noted above, a convenience store sells a variety of items but sales volume of each item is low. In this case study, the food waste of the target store was subjected to an MFCA analysis.

In a convenience store, various food items are sold, including lunch boxes, sandwiches, and bread, each with their expiry date and time; these products are to be removed from shelves and disposed of a few hours before their expiry time.

The objective of this study was to determine the products that were yet to be sold and their associated costs. Three types of sandwiches—ham sandwich, egg sandwich, and cheese sandwich—were selected among many items with expiry date and time, as the items were regularly on shelves. Also, the target convenience store was defined as the quantity centre for the MFCA analysis.

(3) Description of material losses

(i) Definition of material losses
From all the purchased items, those sandwiches that are yet to be sold became material losses.
(ii) Collection of MFCA data
Data from the point-of-sale (POS) system for the targeted product was collected (i.e., number of items purchased, sold, and disposed of). In addition, energy cost (electricity expense) and system cost (labor cost and royalty) were included in the MFCA analysis.

Japanese convenience stores sell a variety of products, including food, magazines, and groceries, and provide various services, including photocopying, reception for delivery service, and payment for utilities. The target chosen in this case study was one such typical convenience store, located in a rural city in Japan.

(4) Findings through MFCA analysis
(i) Material cost for disposed items
As shown in Table 20.1, 41 pieces of the sandwich (3.5 kg; purchase cost: 2,900 yen) were disposed of. The three types of sandwiches accounted for a small share of food products on sale. As stated before, 40 kg of waste food were disposed of per day in the targeted convenience store. Estimations suggest that the purchase cost of these disposed items reached as high as 12,000 yen per day, a significant financial burden for running the convenience store.

Table 20.1 MFCA balance sheet (Figures have been altered for publication)

<table>
<thead>
<tr>
<th>Material and material cost</th>
<th>Unit cost (thousand yen/piece)</th>
<th>Quantity (piece)</th>
<th>Cost (thousand yen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ham</td>
<td>0.07</td>
<td>127</td>
<td>8.3</td>
</tr>
<tr>
<td>Egg</td>
<td>0.07</td>
<td>101</td>
<td>7.0</td>
</tr>
<tr>
<td>Cheese</td>
<td>0.08</td>
<td>111</td>
<td>8.6</td>
</tr>
<tr>
<td>Ham (Negligence)</td>
<td>0.00</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Egg (Negligence)</td>
<td>0.00</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cheese (Negligence)</td>
<td>0.00</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Ham (Carrying-over)</td>
<td>0.00</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Egg (Carrying-over)</td>
<td>0.00</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cheese (Carrying-over)</td>
<td>0.00</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>345</td>
<td>0.0</td>
<td>23.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume and cost for waste management</th>
<th>Unit management cost (thousand yen/kg)</th>
<th>Quantity (kg)</th>
<th>Cost (thousand yen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ham</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Egg</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cheese</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy amount and cost</th>
<th>Unit cost (thousand yen)</th>
<th>Usage amount</th>
<th>Cost (thousand yen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity (kwh)</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>System Cost</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

(ii) CO_2 emissions associated with food waste
The CO_2 emissions associated with food waste were estimated. The purchase cost of the food waste was equal to the purchase cost of 200 pieces of sandwiches. On the basis of the estimated life-cycle data for sandwiches (74 g-CO_2), it was found that 14.8 kg-CO_2 was wasted;
this resulted in an annual waste of 5,402 kg-CO2. There are 43,228 stores in Japan. Total CO2 emissions associated with the food waste from those convenience stores were estimated to be roughly 230,000 tons.

(5) Targeted points to be improved or improvements based on MFCA analysis
The MFCA analysis revealed that reduction in food waste had a significant impact not only on the financial performance of a convenience store but also on CO2 emissions. In order to effectively control opportunity losses as well as the quantity of food waste, it was necessary to place orders accurately.

(6) Conclusion
As identified by the MFCA analysis, the products that were yet to be sold were disposed of and became material losses for the convenient store. However, ordering fewer products can lead to a sold-out situation, as a result of which the convenience store could miss a sales opportunity. In the current POS system, purchase and sales volumes are estimated, thus giving the store owner and manager the necessary information to avoid a sold-out situation. However, in the target convenience store, this information was not readily available to the store owner and manager. In this respect, it is necessary to improve the POS system, so that the store owner has access to information on the cost of the products yet to be sold and on the opportunity loss.
IV. Case Examples in the Supply Chain
Case 21 Sanden Corporation and Sanwa Altech
Production characteristics: Mass-production of relatively small varieties of products

(1) Organizational profile
Two companies (Sanden Corporation and Sanwa Altech (consolidated subsidiary of Sanden Corporation) were involved in this project (hereafter referred to as “Sanden” and “Sanwa Altech”, respectively).
Both Sanden and Sanwa Altech are located in Iseaki City, Gunma Prefecture, Japan. The total factory employees of Sanwa Altech numbered approximately 70 in 2006 and those of Sanden numbered 9,170 in 2005. The capitals of Sanwa Altech and Sanden were 480 million yen and 11.037 billion yen, respectively. The process selected for this project was aluminum die-casting for compressor-parts and processing of machine.

(2) Material flow model of Main Target Process/es
Figure 21.1 indicates material flow and the selected process (MFCA boundary):

As shown in Figure 21.1, aluminum die-casting was conducted at Sanwa Altech, and processes following the machining process were conducted at Sanden.
The aluminum ingot – the material used in the die-casting process - was supplied by Sanden for the processes by Sanwa Altech. Further, with regard to left-over materials and defective products generated at Sanwa Altech and Sanden were returned to the dissolution process and reused. Further, aluminum dross, burrs, turnings and chips were sold as valuable materials.
The quantity centre (QC) was defined based on the process chart above. In addition, types of material for calculation were shown in the followings:

- Material: aluminum ingot, returned materials (such as left-over materials and defective products); and
- Auxiliary and operating materials: all of the auxiliary materials shown in Figure 21.1 were subject for calculation.

As noted above, this case example was based on the operations by two companies. In order to consolidate MFCA calculations between these two companies, the following approaches were taken:

- Two separate MFCA calculation models were established for the aluminum die-casting facility and the machining facility;
- Subsequently, two calculation results were consolidated for analysis; and
- The consolidated MFCA calculation was made based on information about system cost and energy which were partly related to allocation of processing unit costs as agreed between Sanden and Sanwa Altech.

(3) Description of material losses
Input and material loss at each phase of the operations consisted of the followings:

- Left-over materials and defective products at Sanwa Altech and Sanden that were returned to the dissolution process and reused; and
- Aluminum dross, burrs, and turnings and chips were sold as valuable materials and recycled.

(4) Findings through MFCA analysis
Input and output data in each quantity center were surmised in the material flow cost matrix as shown in Table 21.1:

<table>
<thead>
<tr>
<th>Material/Recycling</th>
<th>Material cost</th>
<th>Energy cost</th>
<th>System cost</th>
<th>Waste management cost</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products</td>
<td>339.9</td>
<td>77.2</td>
<td>257.6</td>
<td>674.7</td>
<td>38.0%</td>
</tr>
<tr>
<td>Material loss</td>
<td>64.8</td>
<td>55.3</td>
<td>99.6</td>
<td>219.7</td>
<td>7.2%</td>
</tr>
<tr>
<td>Waste/recycling</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>Sub-total</td>
<td>404.6</td>
<td>132.5</td>
<td>357.2</td>
<td>0.1</td>
<td>45.2%</td>
</tr>
</tbody>
</table>

NOTE Figures have been altered for publication. Figures are in units of 1,000 yen.

As stated before, material loss generated at the die-casting factory (e.g., runner, biscuit, defective products, and products from a trial operation) and defective products from the machining process were input as returned materials. These returned materials were re-input into the subject process and were not considered to cause any issues. However, these materials
carried over the energy cost and the system cost (e.g., labor cost and depreciation cost) from the initial operation.

(5) Targeted points to be improved or improvements based on MFCA analysis
Following points were identified to be the target points for improvements based on the MFCA analysis:

- Further operational management in a supply chain;
- Review and reduction of the input material;
- Technological break-through; and
- Feedback of the MFCA information to product design.

(6) Conclusion
Based on the comparative analysis of various production measures including in-process recycling and collection of valuable resources, reduction of material loss was considered to be the most effective option for cost reduction.
Case 22 Panasonic Ecology Systems Co., Ltd. and its supply chain
Production characteristics: MFCA implementation in a supply chain

(1) Organizational profile
Panasonic Ecology Systems Co., Ltd. (hereafter referred to as “Panasonic Ecology Systems”) manufactured heat-transfer elements used in heat exchange units through vacuum forming. PS sheets which are the main materials used for the product of Panasonic Ecology Systems, were processed through sheet forming by Nippon Sangyo Shizai Co., Ltd. (hereafter referred to as “Nippon Sangyo Shizai”). Table 22.1 summarizes the overview of these companies engaged in this project.

<table>
<thead>
<tr>
<th>Table 22.1 Overview of Subject Companies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Panasonic Ecology Systems</td>
</tr>
<tr>
<td>Nippon Sangyo Shizai</td>
</tr>
<tr>
<td>Number of employees</td>
</tr>
<tr>
<td>5,519 (as of March 2009)</td>
</tr>
<tr>
<td>Capital</td>
</tr>
<tr>
<td>12.09236 billion yen</td>
</tr>
</tbody>
</table>

(2) Products and processes subject to MFCA implementation and their characteristics
(material flow model of main target processes)
Overview of the production processes conducted by two companies was shown in Figure 22.1. Nippon Sangyo Shizai blended virgin polystyrene (PS) material with butadiene rubber etc., and formed a sheet in which PS sheets were formed and finished to be rolls. Panasonic Ecology Systems conducted the vacuum forming process in which PS roll materials were used to form heat exchange sheets, being subsequently trimmed. At this time, cross-directional mill ends (borders) and feed-directional mill ends (feed) were crushed and sold as valuable resources.

Parameters for MFCA data collection were defined as follows:
- Nippon Sangyo Shizai: butadiene rubber etc. was input with virgin PS material in the compounding process. Roll material at specified dimensions was produced in the forming process; and
- Panasonic Ecology Systems: PS roll materials were input as the main material. Urethane-made materials were input in the assembly process.
(3) Description of material loss
- Nippon Sangyo Shizai
 Some purge materials, mill ends, and scrap materials were generated due to technical setting at the start of the operation of the forming process. Mill ends were generated in-line but the materials were immediately crushed, and re-input as raw materials. Purge materials and scrap materials were re-input during the next production process or used for another product.

- Panasonic Ecology Systems
 Cross-directional mill ends (borders) and feed-directional mill ends (feed) were generated from the vacuum forming process.

(4) Findings through MFCA analysis
- Nippon Sangyo Shizai
 All mill ends were recycled internally. Although it appeared that no material losses were generated because of the recycling practice, energy and personnel costs etc. for the formation and crushing of these mill ends were input to these losses and these associated costs were carried over from the previous production cycle. These costs were considered losses.

- Panasonic Ecology Systems
 While selling material waste as valuable resources was considered to be reasonable, it was found that the selling price was extremely small compared to the production costs for this material waste (material loss costs); only 2% of the production costs were recovered from this practice.

(5) Targeted points to be improved or improvements based on MFCA analysis
- Nippon Sangyo Shizai
 As gaps were identified between forming width and delivered product width, the minimum forming width required to guarantee thickness will be sought. In addition, purge losses were identified when materials were initially input at the time of the process changeover. Also, losses from final sheet scrap material were identified. The process-changeover practice will be re-considered, and reduction of material loss will be promoted.

- Panasonic Ecology Systems
 As divergence existed between material width and product width, the edge space will be reduced by 10mm. In addition, as material losses were identified from trimming, minimization of the divergence between the mold and cavity will be promoted. Further, as there was loss in the feed direction, minimization of feed and placement of the positioning boss will be considered.

- Issues undertaken in cooperation by both companies
 It was found that mill ends produced at Panasonic Ecology Systems could be re-input in the processes at Nippon Sangyo Shizai through re-pelletizing, which was also quite
cost-effective. It was also found that the quality of scrap materials generated at the end of the sheet forming process were good enough to be input in the processes at Panasonic Ecology Systems; review of the processing company for waste material re-pelletizing, physical distribution, and commercial distribution will be conducted to establish a closed material recycling cycle.

(6) Conclusion
As a result of discussion by both companies, reduction of borders was considered. Test processing found that the standard width dimensions could be made 10 mm smaller. In addition, Panasonic Ecology Systems modified the vacuum forming mold and succeeded in making the dimensions in both the cross direction and feed direction 10 mm smaller. The purchase cost of the scrap materials was adjusted etc., and its deliveries were started. Owing to these measures, mill ends which used to be an output to the recycling market was diminished. Amount of the virgin material input at Nippon Sangyo Shizai became equivalent to amount of the product at Panasonic Ecology Systems. In particular, the forming load at Nippon Sangyo Shizai was significantly decreased. Although it used to be vaguely assumed that adequate streamlining of this process had already been conducted, it was found through implementation of MFCA that there was in fact much room for improvement. In particular, by conducting an analysis of the entire supply chain, large areas for improvement in the supply chain were revealed.
Case 23 Ohu Wood Works Co., Ltd. and companies in its supply chain
Production characteristics: Supply chain-wide MFCA implementation in the household stainless steel parts

(1) Organizational profile
Ohu Wood Works Co., Ltd. (hereafter referred to as “Ohu Wood Works”) is involved in various operations from the design to installation of wooden furniture. 85% of the furniture manufactured at the company is used at educational and medical facilities throughout Japan. Moreover, Miyoshi Industry manufactures stainless steel members.

The objective of introducing MFCA in the aforementioned two companies was to minimize total material losses in the supply chain by reviewing a layout at the design phase.

<table>
<thead>
<tr>
<th>Table 23.1 Overview of Subject Companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohu Wood Works Co., Ltd</td>
</tr>
<tr>
<td>Number of employees</td>
</tr>
<tr>
<td>Capital</td>
</tr>
</tbody>
</table>

(2) Products and processes subject to MFCA implementation and their characteristics (material flow model of main target processes)
Originally, Miyoshi Industry produced stainless steel parts, another supplying company produced uniboards, and Ohu Wood Works assembled them. In this project, production lines for “training kitchen counters” and “installed household sinks” which are produced by Ohu Wood Works and a stainless steel sink, a main material for these Ohu Wood Works’s products, which is manufactured by Miyoshi Industry were selected for MFCA analysis. The manufacturing processes of these two companies were noted below:

- Manufacturing processes and quantity centres
 Each of their manufacturing processes and supply chains are shown in Figure 23.1.

- The target processes in Ohu Wood Works consisted of production of the wooden structure from uniboard, and the finishing process. In the finishing process, the stainless steel sink-tops produced by Miyoshi Industry was set to this wooden structure; and

- In Miyoshi Industry, based on the specification provided by Ohu Wood Works, requisite rectangular materials were cut in the shirring process from stainless steel materials which had been optimally cut to length. Subsequently, they were cut by the laser-cutter in order to conform to the external development-shape and underwent a bending process. Finally, a sink-top was produced through the welding and finishing processes.
(3) Description of material losses (Description of material loss)

- Losses from the subject process
 - Ohu Wood Works: no material losses were generated; and
 - Miyoshi Industry: SUS mill-ends were generated through the shirring and NC/laser process. Grind stone and buffing material losses were generated in the welding-finishing process, and left-over materials of dew-condensation control sheets were generated from the shipment process.

- MFCA data definition
 In the process of Ohu Wood Works, the stainless steel parts supplied by Miyoshi Industry were substantial in terms of physical and monetary quantities while the process that involved these parts was limited to be the attachment process. As the material losses related to the stainless steel parts were considered to be nearly zero, this could keep the material loss rate very low, potentially distorting the analysis. Hence, the stainless parts were excluded from the MFCA analysis. Regarding the additional parts used for assembly, only cost-information for these parts were included in the analysis.

For Miyoshi Industry, most of the materials input into the process were included in the MFCA calculation. As the externally supplied sink bowl did not incur any cost, it was excluded from the MFCA analysis.

(4) Findings through MFCA analysis

MFCA analysis found that the steel mill ends generated from the shirring process and the laser process at Miyoshi Industry accounted for the entire portion of the material losses. In particular, significant amounts of shirring mill ends were identified; cut lengths were considerably different from mill ends to mill ends. In addition to this, welding gas losses and labor losses were found to be substantial in the Miyoshi Industry’s welding process and the finishing processes.
(5) Targeted points to be improved or improvements
- Improvements through collaboration between Ohu Wood Works and Miyoshi Industry
 With respect to the SUS mill ends generated through the shirring process, these material losses occurred due to adjustments to the cut length based on the ordered product. This led to issues of squabbling over the cut length dimensions of the SUS material and the instructed dimensions specified by Ohu Wood Works. Data on the yield ratio from the SUS material shirring process will be gathered on a monthly basis in order to explore the possibility for design standardization between two companies.
 During the sink-design process prior to an order-reception, when considering the cut lengths of stainless steel material and the basic shape of sinks for educational facilities, there were parts that could allow for free design to a certain extent. When designing a made-to-order sink, variable dimensions were decided in advance so that the sink will conform to the cut length dimensions of the stainless steel materials, without changing the basic specifications. This will be proposed to the client on a necessary basis.

- Miyoshi Industry
 Use of a large amount of welding gas and the associated labor costs during the welding process and the finishing process were found to be an issue. These losses were due to the welding technical standard. Systematic training in welding techniques will be conducted to minimize these losses.

(6) Conclusion
Transparency of source of material losses was increased through the MFCA analysis; losses were identified to be more substantial than originally expected. In order to reduce such losses, the furniture-design in consideration of the material yield ratio was crucial. To this end, Ohu Wood Works and Miyoshi Industry will work together to standardize designs, and will continue to improve yield ratio from the SUS shirring process. Likewise, it is desirable that by improving the yield ratio, reduction in the input volume of the raw material, less generation of the material losses, and cost reduction are achieved.
V. Annex (Overview of Material Flow Cost Accounting)

The annex is based on the first chapter of “Guidance on Introduction of Material Flow Cost Accounting (Third version)” issued by the Ministry of Economy, Trade and Industry of Japan in March 2009.
Overview of Material Flow Cost Accounting

1. What is Material Flow Cost Accounting?

Material Flow Cost Accounting (hereafter referred to as “MFCA”) is one of the environmental management accounting tools aimed to simultaneously reduce both environmental impact and costs. This tool is designed for organization's decision-making. MFCA seeks to reduce costs through waste reduction, thereby improving business productivity.

MFCA measures the flow and stock of materials which include raw materials, parts and components in a process, in both physical and monetary units. The costs are managed in the categories of material cost, energy cost, system cost, and waste management cost.

You can identify the loss costs by defective products, waste and other emissions, through quantification of materials in each manufacturing process, and converting them in physical and monetary units.

In addition to the material costs, labor costs, depreciation costs and other processing costs are included in the loss costs. Costs for waste (material losses) are also calculated by the same means as product cost.

An increasing number of companies are introducing MFCA in Japan, for the following reasons.

— MFCA helps organizations reduce the amount of material losses, rather than recycling wastes;

— Reduced waste generation directly leads to the reduction of material input and material cost, which realizes direct cost reduction;

— Reduced waste generation also leads to increased efficiency in processing and waste treatment activities, thereby enabling reduction of not only material costs but also of manufacturing costs in general; and

— Reductions of waste generation and of material input (resource consumption) are one of the key activities in environmental management to lower the environmental impact.

2. Significance of MFCA, its economic effects and environmental contribution

A business entity is required to make “environmental consideration” in diverse phases of its operations. Many companies are promoting environmental management of their business facilities and emissions from such facilities through manufacturing activities, promoting waste recycling and achieving zero emission.

Although waste recycling is one of the important measures for effective resource use, it should be noted that the recycling process carried over the cost from the previous activities, requiring the input of substantial expenses and energy, in addition to those spent from the resource input
Therefore, it is essential to reduce material losses itself. MFCA identifies the quantities and costs (incl. material, processing and waste treatment costs) of waste generated from a process. This enables us to identify the fundamental source of waste generation and clarify difficulties in its reduction, which leads to the reduction of waste generation itself.

Reduction of waste generation directly leads to reduced input of resources and enhanced environmental performance in manufacturing process, as well as realizing slimmed resource procurement and increased efficiency in business operations. MFCA is an effective management tool that helps business management to better understand the “harmony of environmental aspects and profitability”, through improvement of material productivity and cost reduction.

3. Waste from process = Material loss

In a processing-type manufacturing, material losses are generated in various steps of the manufacturing process. Material losses generated from a process include the followings:

- Material loss during processing (e.g. listing, swarf), defective products, and impurities;
- Materials remained in an equipment following set-ups;
- Auxiliary materials (e.g. solvents and other volatile materials, detergents to wash equipment before set-ups): and
- Raw materials, work-in-process and stock products discarded due to deterioration or other unusable reasons.

MFCA traces and equally evaluate material flows for products and wastes (material losses).
4. Material flow and MFCA

One of the methods to clarify material losses is material flow analysis. An example of material flow analysis is indicated in Figure V-2.

In Figure V-2, 1,000 kg of main materials are input in Process A, and generate 100 kg of the material losses in Process A and 90 kg in Process B, respectively. While 100 kg of main materials lost in Process A is recycled by an external contractor, 90 kg in Process B is disposed of as material loss.

Of sub (auxiliary) materials input in Process A, 10 kg and 9 kg become material losses in Processes A and B, respectively. A total of 19 kg of sub materials are disposed of as waste. 1 kg
of operating materials are input in Process B, all of which become the material loss.

Consequently, 1,101 kg of materials are input in this process, of which 891 kg become products and 210 kg are material losses. As 100 kg are recycled by an external contractor, the final material loss is estimated to be 110 kg.

Material flow cost analysis evaluates the material loss (i.e., material loss costs associated with main materials, auxiliary materials and operating materials) (Table V-1).

<table>
<thead>
<tr>
<th>Table V-1. Calculation of material loss cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
<tr>
<td>Unit</td>
</tr>
</tbody>
</table>

If a company has the data of its material balance, it can easily calculate the material loss cost by multiplying quantities of each material (kg) by their unit prices. Table V-1 indicates that even if you recover some material cost by external recycling, this is significantly small compared to the material loss costs. Although external recycling is an important activity, it is more significant to reduce waste generation itself if you consider economics.

Economic loss (loss cost) caused by material losses is not limited to the material cost. As long as each process requires input of energy, labour, depreciation, and other costs, these costs are also assigned or allocated to material losses. Waste needs treatment activities and this cost is also added to calculation.

For calculation, MFCA adds all the cost information including material, processing, energy, waste treatment and other costs to the quantity data based on material flow, thereby tracking the entire flow of each raw material and adding the quantity and cost information to such flow.

Therefore, MFCA helps organizations analyze the economic loss (loss cost) by material loss not only in terms of material cost but also associated costs such as processing, energy, waste treatment and all other comprising costs.

5. Characteristics of cost accounting by MFCA

The calculation of manufacturing costs for a product is based on the following approaches in MFCA.
(i) Allocating costs to products and material losses

- Product cost: Costs assigned or allocated to products that flow to the next process; and
- Material loss cost: Costs for disposed or recycled items.

(ii) Calculating costs throughout the process

Product cost at one quantity centre is accumulated as the new input cost in the following quantity centre, totalling the input costs for calculation.

(iii) All manufacturing costs are categorized into the following four groups for calculation:

- MC: Material costs (costs of materials including main materials put in from the initial process, auxiliary materials put in during midstream processes, and operating materials such as detergents, solvents and catalysts);
- SC: System costs (all expenses incurred in the course of in-house handling of the material flows such as labor, depreciation, overhead costs, etc.);
- EC: Energy costs (Cost for the energy to enable operations such as electricity, fuel, utility); and
- Waste treatment costs.

6. Making material loss “visible” in its quantity and cost

MFCA calculates the cost of material losses which represents economic loss (loss cost) caused by the material loss.

This helps you increase transparency of material loss throughout the process, using the quantities of materials that do not become products as well as overall costs including energy and system costs associated with the material loss.

MFCA makes material loss visible using quantities and

Identifying issues
Recognizing points for improvement

Figure V-3 Advantages of MFCA

By making material loss “visible”, MFCA provides organizations with opportunities to “identify problems and recognize the necessity for their improvement” (Figure V-3).

(i) Identifying problems
Through MFCA, organizations have a chance to realize existence of material loss and the resulting economic loss, which has been overlooked by conventional cost accounting.

Many companies indicate that they monitor yield rate associated with the materials used in the process. However, the scope of such monitoring only covers part of materials, processes or losses in many cases. They often control main materials, without monitoring the amounts of use or loss in auxiliary or operating materials. On-site operators may be seeing materials getting lost, while managers of the manufacturing department, the production engineering department and the product design department are not aware of such losses. This happens because the company’s conventional waste management practices only focuses on handling of wastes in typical cases.

In such cases, MFCA helps organizations highlight conventionally uncontrolled material losses. Systematic approach for material losses reduction is started when you identify problems.

(ii) Recognizing points for improvements

A company may be aware of material losses, but does not have appropriate improvement measures in place. There are varieties of reasons for not taking improvement actions, such as “This is standard operation,” “This is the result of past improvement,” “Capital investment is not likely to be retrievable,” “We are busy,” “We do not have sufficient human resources,” and “It is technologically impossible”. If you further analyze their claims, you may find out that they have “given up or ignored improving”, not that “improvement is technically impossible”.

In such cases, the true problems lie in not taking actions to break through technological limits, not in technological difficulty itself. Solving a problem is equivalent to breaking true familiar excuses such as “This is the limit,” “This is the standard,” “That’s not impossible,” and “We are too busy.” Recognizing necessity for improvement is signified to start improvement measures beyond such excuses.

By applying MFCA, loss costs are identified including processing costs, caused by material losses. In many cases, scale of the identified costs is far more significant than you had previously assumed. Not a few managements are surprised at the enormous loss cost. They also realize that cost improvement measures are more effective than their previous recognition, which often paves the way for improvements that had been overlooked.

At the same time, MFCA presents an ultimate target for engineers: “the zero material loss cost”. This ambitious goal urges engineers to make a breakthrough as mentioned above, through the recognition of necessity for improvements.

7. Manufacturing loss cost seen through MFCA

Types of manufacturing loss in the scope of calculation and management by MFCA are as follows:
(i) Occurrence and yield rate of material loss by process;
(ii) Causes for material loss by process (swarf, listing, set-up loss, defects, tests, etc.);
(iii) Procurement cost for material losses (main, auxiliary, and operating materials);
(iv) Waste treatment cost for material loss;
(v) Procurement cost for material losses sold to external recycling contractors;
(vi) System cost for material losses (labor, depreciation, fuel, utility and other costs);
(vii) System cost required to internal recycling of materials; and
(viii) Material and system costs for in-stock products, work-in-progress materials or materials that were disposed of due to switch to a newer model or deterioration of quality, or for such stock that has been aging.

Many companies manage the first three items above, at least for main materials. Unfortunately, only fewer companies controls sub or auxiliary materials on a corporate basis. Auxiliary and operating materials are often managed on a process or equipment basis, and the quantities of materials input (and lost) for each model are rarely under management. In some cases, such quantities are managed in the unit of production lot.

The overall waste treatment cost (Item (iv)) is generally managed on a factory basis by waste type. However, few companies identify such cost by material type, by product model and by process type.

Companies are often unaware of losses associated with recyclable waste as indicated in Item (v), because such waste is reused as resources and sometimes sellable as valuable materials to external recyclers.

Items (vii) to (viii) are difficult to be identified unless process-wide MFCA calculation is conducted.

Many companies identify time loss due to equipment downtime, set-up and other reasons. Some of them promote improvement activities such as Total Productive Maintenance (TPM). Such loss is considered to be part of input cost included in equipment depreciation cost, and should preferably used in combination with MFCA.

8. MFCA makes loss “visible” for each process

Figure V-4 indicates the calculation of MFCA, using a simplified MFCA trial tool, using template data provided for trial of MFCA calculation. This tool is included in an MS-Excel file downloadable from the MFCA website (http://www.jmac.co.jp/mfca/thinking/07.php) (in Japanese only). The diagram shows the image of a calculation flow chart that include (Waste treatment cost is excluded).
In this example, a total material loss cost of 19.3 yen is provided as procurement cost for material losses, based on quantity of the material losses generated.

MFCA includes energy costs and systems costs that are assigned or allocated to material losses as a part of the material loss cost. In this example, the total system costs for the material loss are 40.7 yen, while total energy costs for the material loss are 4.1 yen. By adding these two costs to the material loss costs above, you will have the total costs for the material losses in the manufacturing process, which stands at 64.0 yen in this example. This accounts for 29.8% of the total costs for this manufacturing process (215.0 yen).

Such material loss costs are identified on a process-by-process basis in MFCA.

In the example above, material loss costs for material processing, parts processing and finishing processes are 15.8, 21.6 and 26.6 yen, respectively. The ratios of products and material loss quantities are calculated to be 15% and 85%, respectively. Because energy costs and system costs from the previous process are included in the material loss costs for the following processes. In other words, the manufacturing losses cause the greater material loss costs in the later processes.
Material Flow Cost Accounting
MFCA Case Examples

Issued in: March 2010
Issued by: Environmental Industries Office, Industrial Science and Technology Policy and Environment Bureau, Ministry of Economy, Trade and Industry, Japan
1-3-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8901 Japan
TEL: (Main) 81-3-3501-1511 (EXT: 3527, 3528)
(Direct) 81-3-3501-9271
E-Mail: qqgdbg@meti.go.jp

If any inquires, please contact the MFCA project office:

JMA Consultants Inc. MFCA Center
MFCA project office
Address: 4th Fl., Shuwa 2nd Shibakoen 3chome Bldg., 3-22-1 Toranomon, Minato-ku, Tokyo, 105-8534 Japan
TEL: 81-3-3434-7331
FAX: 81-3-3434-6430
E-Mail mfca_eco@jmac.co.jp